

KUGELKEIL- UND KUGELNUTWELLEN

Einbau und Wartung

Zur Handhabung, zur Schmierung und zum Einbau der Produkte beachten Sie bitte die Einbau- und Wartungsanleitung, die jeder Sendung beiliegt.

Nachbearbeitung

Auf Wunsch können wir Ihnen eine Bearbeitung der Produkte nach Ihrer Vorgabe/Zeichnung anbieten.

Sicherheitshinweise

Das verwendete Logo, die verwendeten Informationen, Abbildungen und Texte bzgl. der THK Produkte unterliegen dem Copyright der THK Co. Ltd. und sind für die Verwendung dieses Kataloges seitens THK freigegeben. Für etwaige Fehler der genannten Informationen, Abbildungen und Texte kann seitens THK keine Haftung übernommen werden. Aus Gründen des technischen Fortschritts können die in dem Katalog enthaltenen Angaben und technische Daten, die THK-Produkte betreffend, durch THK ohne vorherige Ankündigung geändert werden.

Der vorliegende Katalog wurde mit großer Gewissenhaftigkeit erstellt und auf Richtigkeit des Inhalts überprüft. Für etwaige Fehler kann keine Haftung übernommen werden.

Inhaltsverzeichnis

Grundlagen Wellenführungen	Seite 5 - 24
Kugelkeilwelle LBS Aufbau und Merkmale	Seite 25 - 32
Bestellschlüssel	Seite 33
Technische Daten Zylindrische Mutter LBS	Seite 34 - 35
Technische Daten Zylindrische Mutter LBST	Seite 36 - 37
Technische Daten Mutter LBF mit Flansch	Seite 38 - 39
Technische Daten Mutter LBR mit Mittelflansch	Seite 40 - 41
Technische Daten Blockmutter LBH	Seite 42 - 43
Nutwellen LT Aufbau und Merkmale	Seite 44 -49
Bestellschlüssel	Seite 50
Technische Daten Kugelnutwelle LT	Seite 52 - 53
Technische Daten Kugelnutwelle LF	Seite 54 - 55
Aufbau und Merkmale Rotationsnutwellenführung	Seite 56 - 57
Technische Daten Rotationsnutwellenführung ITR	Saita 58 - 50

LBS

LBST

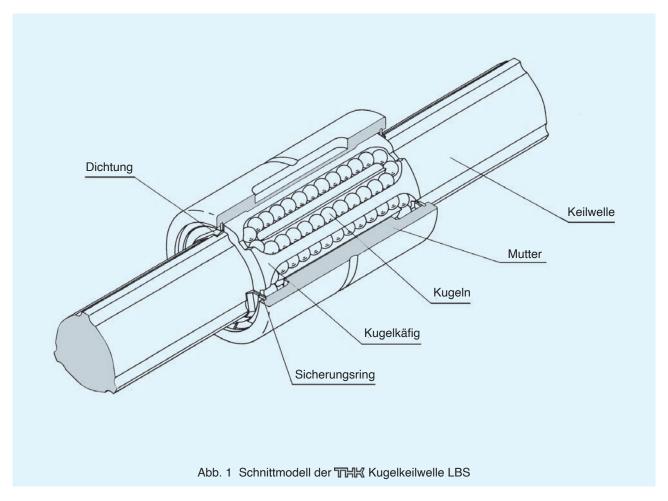
LBF

LBR

LBH

LT

LF



LTR

THK Kugelkeil- und Kugelnutwellen

Die THK Kugelkeil- und Kugelnutwellen sind verdrehgesicherte Wellenführungen, bei denen Kugeln zwischen Welle und Mutter in feingeschliffenen Laufrillen ablaufen. Auf diese Weise können Drehmomente übertragen und gleichzeitig lineare Bewegungen ausgeführt werden. Im Gegensatz zu konventionellen Systemen kann hierbei die Mutter vorgespannt werden, um auch unter schwierigen Betriebsbedingungen, wie bei Stößen und Vibrationen oder anderen anspruchsvollen Anforderungen, hervorragende Ergebnisse mit hoher Genauigkeit und guten Schnelllaufeigenschaften zu realisieren.

Die Tragzahlen einer Kugelkeil- bzw. einer Kugelnutwelle sind verglichen mit Kugelbuchsensystemen gleichen Durchmessers um mehr als das zehnfache größer. Somit können die Wellenführungen bei kompakteren Abmessungen und längerer Lebensdauer höhere überhängende Lasten und Momente aufnehmen als ein System mit Kugelbuchsen.

Einteilung der verdrehgesicherten Wellenführungen

Die Kugelkeilwellen und die Kugelnutwellen werden in die Baugruppen LBS und LT eingeteilt. Wichtige Unterscheidungskriterien sind dabei die Wellengeometrie mit Keilflanken oder Nuten sowie der unterschiedliche Kontaktwinkel zwischen den Wälzkörpern (Kugel) und den eingeschliffenen Führungsbahnen.

Zu jeder Baugruppe ist eine große Auswahl an verschiedenen Muttern für die unterschiedlichsten Einbaubedingungen lieferbar.

	Тур	Modell	Bauform
		LBS LBST	
shmomente		LBF	
Typen für hohe Drehmomente		LBR	
		LBH	

Wellendurchmesser	Aufbau und Merkmale	Typische Anwendungen
Nenndurchmesser 15 - 150 mm	 Am Umfang der Welle sind in einem Winkel von 120° die Keilflanken angeordnet. An diesen Keilflanken befinden sich beidseitig geschliffene Kreisbogenlaufrillen, in denen Kugeln ohne oder mit einer bestimmten Vorspannung ablaufen. Durch die Umlenkung der Kugeln innerhalb der Keilwellenmutter wird ein mini- 	 Säulen und Arme von Industrierobotern automatische Ladevorrichtungen Transfermaschinen automatische Transfereinrichtungen Reifenformmaschinen Spindeln von Punktschweißmaschinen Führungswellen für schnelle Lackierautomaten
Nenndurchmesser 15 - 100 mm	 maler Mutterdurchmesser realisiert. Auch bei erhöhter Vorspannung bleiben die guten Laufeigenschaften erhalten. Mit dem großen Kugel-Kontaktwinkel von 45° wird die Einfederung minimiert und eine sehr steife, verdrehgesicherte Wellenführung realisiert. Ohne Winkelspiel. Zur Übertragung von hohen Drehmomenten. 	 Nietmaschinen Drahtwickelmaschinen Aufspannköpfe von Funkenerosionsmaschinen Antriebsspindeln von Schleifmaschinen Wechselgetriebe Präzisionsschaltspindeln
Nenndurchmesser 15 - 50 mm		

	Тур	Modell	Bauform
e Drehmomente		LT	
Typen für mittlere Drehmomente		LF	
Rotationstypen		LTR	

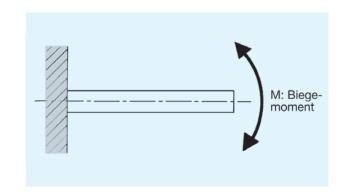
Wellendurchmesser	Aufbau und Merkmale	Typische Anwendungen
Nenndurchmesser 4 - 100 mm	 Auf der Welle sind längsseits Kreisbogenlaufrillen einge- schliffen, in denen Kugeln mit oder ohne einer bestim- mten Vorspannung abrollen. Der Kugel-Kontaktwinkel beträgt 20°. Mit einer ent- sprechenden Vorspannung besitzt diese Kugelnutwelle eine hervorragende Moment- steifigkeit ohne Winkelspiel. 	 Wellen für Führungsgestelle für lineare Bewegungen unter hoher Belastung. Ladevorrichtungen mit vorgegebener Winkelstellung bei festgelegten Positionen. Einachsige Konstruktionen, wie die Spindel von automatischen Brennschneidmaschinen, bei denen eine Welle verdrehfest gelagert
Nenndurchmesser 6 - 50 mm		sein muss. Arme und Säulen von Industrierobotern Punktschweißmaschinen Buchbindemaschinen automatische Ladeein richtungen verschiedene XY-Schreiber automatische Zwirnmaschinen optische Messgeräte
Nenndurchmesser 16 - 60 mm	Bei dieser leichten und kompakten Ausführung laufen die Kugeln wie bei dem Typ LT in Kreisbogenlaufrillen. Zusätzlich ist dieser Typ mit Stützlagern ausgestattet.	 Z-Achse für Scara-Roboter Wickelmaschinen

Berechnung des Wellendurchmessers

Auf die Welle können radiale Belastungen und Momente wirken. Bei verhältnismäßig hohen Belastungen oder angreifenden Momenten muss der erforderliche Wellendurchmesser berechnet werden.

Welle bei Biegemoment

Bei einem auf die Welle wirkenden Biegemoment benutzen Sie bitte die unten stehende Formel (1) zur Ermittlung des geeigneten Wellendurchmessers.


$$M = \sigma \times Z \text{ und } Z = \frac{M}{\sigma}$$
 (1)

M: max. wirkendes Biegemoment (Nmm)

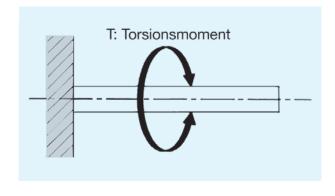
σ: zul. Biegespannung 98 N/mm²

Z : axiales Widerstandsmoment (mm³)

(siehe Tab. 3 und 4)

Welle bei Torsionsmoment

Bei einem auf die Welle wirkendem Torsionsmoment benutzen Sie bitte die unten stehende Formel (2) zur Ermittlung des geeigneten Wellendurchmessers.


$$T = \tau_a \times Z_P \text{ und } Z_P \frac{T}{\tau_a} = \dots$$
 (2)

T: max. wirkendes Torsionsmoment (Nmm)

τ_a: zul. Torsionsspannung 49 N/mm²

Z_P:polares Widerstandsmoment (mm³)

(siehe Tab. 3 und 4)

Welle bei Biege- und Torsionsmomenten

Bei auf die Welle simultan einwirkenden Biege- und Torsionsmomenten sind das einfache äquivalente Biegemoment ($M_{\rm e}$) und das einfache äquivalente Torsionsmoment ($T_{\rm e}$) zu berechnen.

Anschließend ergibt der größere Wert aus diesen beiden Berechnungen den Wellendurchmesser.

Äquivalentes Biegemoment:

$$M_e = \frac{M + \sqrt{M^2 + T^2}}{2} = \frac{M}{2} \left(1 + \sqrt{1 + \left(\frac{T}{M}\right)^2}\right) \dots (3)$$

$$M_e = \sigma \times Z$$

Äquivalentes Torsionsmoment:

$$T_e = \sqrt{M^2 + T^2} = M \times \sqrt{1 + (\frac{T}{M})^2}$$
(4)

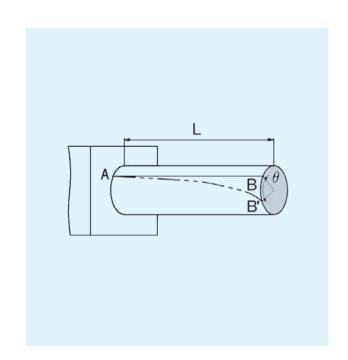
$$T_e = \tau_a \times Z_P$$

Steifigkeit der Welle

Der Verdrehwinkel bezogen auf 1 m einer Welle drückt die Steifigkeit der Welle aus. Der zulässige Verdrehwinkel sollte 1/4° nicht überschreiten.

$$\theta = 57.3 \times \frac{\mathsf{T} \times \mathsf{L}}{\mathsf{G} \times \mathsf{I}_{\mathsf{P}}} \tag{5}$$

$$\frac{\theta \times \ell}{L} < 1/4^{\circ}$$


 θ : Verdrehwinkel (°

L: Wellenlänge (mm)

G : Schubmodul (7,9 \times 10⁴ N/mm²)

 ℓ : Wellenlänge 1000 mm

Ip: polares Flächenträgheitsmoment (mm⁴) (siehe Tab. 3 und 4)

Durchbiegung und Biegewinkel der Welle

Die Durchbiegung und der Biegewinkel einer Welle sollten einzeln nach den unten aufgeführten Belastungsbedingungen und den entsprechenden Formeln ermittelt werden (siehe Tabellen 1 und 2).

In den Tabellen 3 und 4 sind das Flächenträgheitsmoment (I) und das Widerstandsmoment (Z) zur Berechnung des Wellendurchmessers und der Wellendurchbiegung angegeben.

Tab. 1 Formeln zur Berechnung der Durchbiegung und des Biegewinkels

Lagerungsart	Belastung	Formel für Durchbiegung	Formel für Neigungswinkel
Lagerung los - los	ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν	$\delta_{\text{max}} = \frac{P\ell^3}{48EI}$	$\alpha_1 = 0$ $\alpha_2 = \frac{P\ell^2}{16 \text{ EI}}$
Lagerung fest - fest	e /2	$\delta_{\text{max}} = \frac{P\ell^3}{192 \text{ El}}$	$\alpha_1 = 0$ $\alpha_2 = 0$
Lagerung los - los	Streckenlast α_2	$\delta_{\text{max}} = \frac{5p\ell^4}{384 \text{ EI}}$	$\alpha_2 = \frac{p\ell^3}{24\;El}$
Lagerung fest - fest	Streckenlast	$\delta_{\text{max}} = \frac{p\ell^4}{384 \text{ EI}}$	α ₂ = 0

Tab. 2 Formeln zur Berechnung der Durchbiegung

Lagerungsart	Belastung	Formel für Durchbiegung	Formel für Neigungswinkel
Lagerung fest - frei	xemo at	$\delta_{\text{max}} = \frac{P\ell^3}{3 \text{ EI}}$	$\alpha_1 = \frac{P\ell^2}{2 EI}$ $\alpha_2 = 0$
Lagerung fest - frei	Streckenlast & & & & & & & & & & & & & & & & & & &	$\delta_{\text{max}} = \frac{p\ell^4}{8EI}$	$\alpha_1 = \frac{p\ell^3}{6 \text{ EI}}$ $\alpha_2 = 0$
Lagerung los - los	V V V V V V V V V V V V V V V V V V V	$\delta_{\text{max}} = \frac{\sqrt{3} M_0 \ell^2}{216 \text{ El}}$	$\alpha_1 = \frac{M_0 \ell}{12 \text{ EI}}$ $\alpha_2 = \frac{M_0 \ell}{24 \text{ EI}}$
Lagerung fest - fest	Nemo Automotion (New York)	$\delta_{\text{max}} = \frac{M_0 \ell^2}{216 \text{ EI}}$	$\alpha_1 = \frac{M_0 \ell}{16 \text{ EI}}$ $\alpha_2 = 0$

 δ_1 : Durchbiegung am Belastungspunkt (mm)

 $\delta_{ ext{max}}$: max. Durchbiegung (mm)

 $lpha_{
m 1}~$: Biegewinkel am Belastungspunkt $lpha_{
m 2}~$: Biegewinkel an der Lagerung

M₀: Moment (Nmm)

P : Einzelkraft (N)

p : Streckenlast (N/mm)
ℓ : ungestützte Länge (mm)

I : Flächenträgheitsmoment (mm⁴)

E: Elastizitätsmodul (2,06 x 10⁵ N/mm²)

Kritische Drehzahl

Wird die Drehzahl der Welle während des Betriebs bis zu ihrer Eigenfrequenz erhöht, kann dies zum Ausfall der Wellenführung durch Resonanzschwingungen führen. Deshalb sollte die Drehzahl die kritische Drehzahl nicht erreichen oder überschreiten.

Läuft die Welle mit einer Drehzahl, die im kritischen Bereich liegt, muss der Wellendurchmesser überprüft werden. Im allgemeinen sollte die tatsächliche Drehzahl mindestens 20% unter der kritischen Drehzahl liegen.

Kritische Drehzahl:

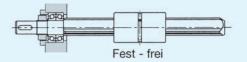
$$N_{C} = \frac{60\lambda^{2}}{2\pi \times \ell_{b}^{2}} \times \sqrt{\frac{E \times 10^{3} \times I}{\gamma \times A}}$$
 (6)

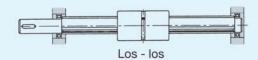
 $\begin{array}{lll} {\rm N_C: kritische\ Drehzahl} & ({\rm min^{-1}}) \\ \ell_b : {\rm St\"utzl\"ange} & ({\rm mm}) \\ {\rm E} : {\rm Elastizit\"atsmodul} & (2,06\times10^5\ {\rm N/mm^2}) \\ {\rm I} : {\rm min.\ Fl\"achentr\"agheitsmoment} & ({\rm mm^4}) \end{array}$

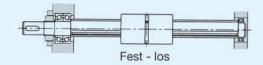
$$I = \frac{\pi}{64} d_1^4$$
 d_1 : Kerndurchmesser (mm)

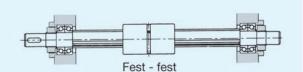
 γ : Dichte (7,85 \times 10⁻⁶ kg/mm³) A : Querschnittsfläche (mm²)

 $A = \frac{\pi}{4} d_1^2$ d_1 : Kerndurchmesser (mm)


λ : Faktor für Lagerungsart


 ① fest - frei
 $\lambda = 1,875$


 ② los - los
 $\lambda = 3,142$


 ③ fest - los
 $\lambda = 3,927$

 ④ fest - fest
 $\lambda = 4,730$

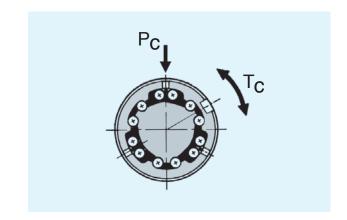
Flächenträgheits- und Widerstandsmomente

Tab. 3 Flächenträgheits- und Widerstandsmomente der Keilwelle LBS

Baugröße		Flächenträgheits- moment I [mm ⁴]	Widerstands- moment Z [mm³]	polares Flächen- trägheitsmoment Ip [mm ⁴]	polares Wider- standsmoment Z _p [mm³]
LBS 15	Vollwelle	1,27×10 ³	$2,00 \times 10^{2}$	$2,55 \times 10^{3}$	4,03×10 ²
LBS 20	Vollwelle	3,82×10 ³	$4,58 \times 10^{2}$	$7,72 \times 10^{3}$	9,26×10 ²
LDS 20	Hohlwelle	$3,79 \times 10^{3}$	$4,56 \times 10^{2}$	$7,59 \times 10^{3}$	9,11×10 ²
LBS 25	Vollwelle	9,62×10 ³	9,14×10 ²	1,94×10 ⁴	1,85×10 ³
LD3 23	Hohlwelle	$9,50 \times 10^{3}$	$9,05 \times 10^{2}$	1,90×10 ⁴	1,81×10 ³
LBS 30	Vollwelle	1,87×10 ⁴	$1,50 \times 10^{3}$	3,77×10 ⁴	$3,04 \times 10^{3}$
LDS 30	Hohlwelle	1,78×10 ⁴	1,44×10 ³	3,57×10 ⁴	2,88×10 ³
LBS 40	Vollwelle	6,17×10 ⁴	$3,69 \times 10^{3}$	1,25×10 ⁵	7,46×10 ³
LD3 40	Hohlwelle	5,71×10 ⁴	$3,42 \times 10^{3}$	1,14×10 ⁵	6,84×10 ³
LBS 50	Vollwelle	1,49×10 ⁵	$7,15 \times 10^{3}$	3,01×10 ⁵	1,45×10 ⁴
LDS 50	Hohlwelle	1,34×10 ⁵	$6,46 \times 10^{3}$	2,69×10 ⁵	1,29×10 ⁴
LBS 60	Vollwelle	3,17×10 ⁵	1,26×10 ⁴	6,33×10 ⁵	2,53×10 ⁴
LDS 00	Hohlwelle	2,77×10 ⁵	1,11×10 ⁴	5,54×10 ⁵	2,21×10 ⁴
LBS 70	Vollwelle	5,77×10 ⁵	1,97×10 ⁴	1,16×10 ⁶	3,99×10 ⁴
LDO 70	Hohlwelle	5,07×10 ⁵	1,74×10 ⁴	1,01×10 ⁶	3,49×10 ⁴
LBS 85	Vollwelle	1,33×10 ⁶	3,69×10 ⁴	2,62×10 ⁶	7,32×10 ⁴
LDO 00	Hohlwelle	1,11×10 ⁶	3,10×10 ⁴	2,22×10 ⁶	6,20×10 ⁴
LBS 100	Vollwelle	2,69×10 ⁶	6,25×10 ⁴	5,33×10 ⁶	1,25×10 ⁵
LDS 100	Hohlwelle	2,18×10 ⁶	5,10×10 ⁴	4,37×10 ⁶	1,02×10 ⁵
LBS 120	Vollwelle	5,95×10 ⁶	1,13×10 ⁵	1,18×10 ⁷	2,26×10 ⁵
LDO 120	Hohlwelle	5,28×10 ⁶	1,01×10 ⁵	1,06×10 ⁷	2,02×10 ⁵
LBS 150	Vollwelle	1,61×10 ⁷	2,40×10 ⁵	3,20×10 ⁷	4,76×10 ⁵
LD3 130	Hohlwelle	1,40×10 ⁷	2,08×10 ⁵	$2,79 \times 10^{7}$	4,16×10 ⁵

Tab. 4 Flächenträgheits- und Widerstandsmomente der Nutwelle LT

	Baugröße		Flächenträgheits- moment	Widerstands- moment Z	polares Flächen- trägheitsmoment	polares Wider- standsmoment		
			[mm ⁴]	[mm³]	l _p [mm⁴]	Z _p [mm³]		
LT 4	Vollwe	elle	11,39	5,84	22,78	11,68		
LT 5	Vollwe	elle	27,88	11,43	55,76	22,85		
LT 6	Vollwe	elle	57,80	19,70	1,19×10 ²	40,50		
LI 0	Hohlwelle	тур К	55,87	18.90	1,16×10 ²	39,20		
LT 8	Vollwe	elle	1,86×10 ²	47,40	3,81×10 ²	96,60		
LI 0	Hohlwelle	тур К	1,81×10 ²	46,00	$3,74 \times 10^{2}$	94,60		
LT 10	Vollwe	elle	4,54×10 ²	92,60	9,32×10 ²	1,89×10 ²		
LI IO	Hohlwelle	тур К	4,41×10 ²	89,50	$9,09 \times 10^{2}$	1,84×10 ²		
LT 13	Vollwe	elle	1,32×10 ³	$2,09 \times 10^{2}$	$2,70 \times 10^{3}$	$4,19 \times 10^{2}$		
LI 10	Hohlwelle	тур К	$1,29 \times 10^{3}$	$2,00 \times 10^{2}$	$2,63 \times 10^{3}$	$4,09 \times 10^{2}$		
	Vollwe	elle	$3,09 \times 10^{3}$	$3,90 \times 10^2$	$6,18 \times 10^{3}$	$7,80 \times 10^{2}$		
LT 16	Hohlwelle	Тур К	2,97×10 ³	$3,75 \times 10^2$	$5,95 \times 10^{3}$	$7,51 \times 10^{2}$		
	Tiornwelle	Typ N	$2,37 \times 10^{3}$	$2,99 \times 10^{2}$	$4,74 \times 10^{3}$	$5,99 \times 10^{2}$		
	Vollwe	elle	$7,61 \times 10^{3}$	$7,67 \times 10^{2}$	1,52×10⁴	$1,53 \times 10^{3}$		
LT 20	Hohlwelle	Тур К	$7,12 \times 10^3$	$7,18 \times 10^{2}$	1,42×10 ⁴	$1,43 \times 10^3$		
	Tiornwelle	Typ N	$5,72 \times 10^{3}$	$5,77 \times 10^{2}$	1,14×10 ⁴	$1,15 \times 10^3$		
	Vollwe	elle	1,86×10 ⁴	$1,50 \times 10^{3}$	3,71×10 ⁴	$2,99 \times 10^{3}$		
LT 25	Hohlwelle	Тур К	1,75×10 ⁴	$1,41 \times 10^{3}$	3,51 × 10⁴	$2,83 \times 10^{3}$		
	Tiornwone	Typ N	1,34×10 ⁴	$1,08 \times 10^{3}$	2,68×10 ⁴	2,16×10 ³		
	Vollwe	elle	3,86×10 ⁴	$2,59 \times 10^{3}$	7,71×10 ⁴	5,18×10 ³		
LT 30	Hohlwelle	Тур К	3,53×10 ⁴	$2,37 \times 10^{3}$	7,07×10 ⁴	$4,74 \times 10^{3}$		
	Tiornwone	Typ N	2,90×10 ⁴	$1,95 \times 10^{3}$	5,80×10 ⁴	$3,89 \times 10^{3}$		
	Vollwe	elle	5,01 × 10 ⁴	$3,15 \times 10^{3}$	9,90×10 ⁴	6,27×10 ³		
LT 32	Hohlwelle	Тур К	4,50×10 ⁴	$2,83 \times 10^{3}$	8,87×10 ⁴	5,61 × 10 ³		
	Tiornwone	Typ N	3,64×10 ⁴	$2,29 \times 10^{3}$	7,15×10 ⁴	$4,53 \times 10^{3}$		
	Vollwe	elle	1,22×10 ⁵	$6,14 \times 10^3$	2,40×10 ⁵	1,21×10 ⁴		
LT 40	Hohlwelle	Тур К	1,10×10 ⁵	$5,55 \times 10^{3}$	2,17×10 ⁵	1,10×10 ⁴		
		Typ N	8,70×10 ⁴	4,39×10 ³	1,71×10 ⁵	8,64×10 ³		
	Vollwe	elle	2,97×10 ⁵	1,20×10 ⁴	5,94×10 ⁵	2,40×10 ⁴		
LT 50	Hohlwelle	Тур К	2,78×10 ⁵	1,12×10 ⁴	5,56×10 ⁵	2,24×10 ⁴		
		Typ N	2,14×10 ⁵	8,63×10 ³	4,29×10 ⁵	1,73×10 ⁴		
LT 60	Vollwe		6,16×10 ⁵	2,07×10 ⁴	1,23×10 ⁶	4,14×10 ⁴		
	Hohlwelle		5,56×10 ⁵	1,90×10 ⁴	1,13×10 ⁶	3,79×10 ⁴		
LT 80	Vollwe		1,95×10 ⁶	4,91×10 ⁴	3,90×10 ⁶	9,82×10 ⁴		
	Hohlwelle		1,58×10 ⁶	3,97×10 ⁴	3,15×10 ⁶	7,95×10 ⁴		
LT 100	Vollwe		4,78×10 ⁶	9,62×10 ⁴	9,56×10 ⁶	1,92×10 ⁵		
L1 100	Hohlwelle	Typ K	3,76×10 ⁶	$7,57 \times 10^4$	$7,52 \times 10^{6}$	1,51×10 ⁵		



Lebensdauerberechnung

Nominelle Lebensdauer

Die Lebensdauer von einzelnen Linearführungssystemen ist auch bei Systemen unterschiedlich, die unter gleichen Bedingungen hergestellt und betrieben werden. Im allgemeinen wird die nominelle Lebensdauer wie folgt definiert:

Die nominelle Lebensdauer wird durch die Gesamtlaufstrecke ausgedrückt, die 90% einer genügend großen Anzahl von Linearführungssystemen unter gleichen Betriebsbedingungen erreichen oder überschreiten, bevor erste Anzeichen einer Werkstoffermüdung auftreten.

Berechnung der nominellen Lebensdauer

Die Betriebsbedingungen einer Wellenführung werden wie folgt eingeteilt:

Betrieb unter Drehmomentbelastung Betrieb unter Radialbelastung Betrieb unter Momentbelastung (Μ_Δ)

Die Tragzahlen zu diesen Betriebsbedingungen finden Sie in den Maßtabellen zu den einzelnen verdrehgesicherten Wellenführungen. Mit folgender Formel wird die nominelle Lebensdauer ermittelt:

• Betrieb unter reiner Drehmomentbelastung:

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C_T}{T_C}\right)^3 \times 50$$
 (7)

• Betrieb unter Radialbelastung:

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_C}\right)^3 \times 50$$
 (8)

• Betrieb unter äquivalenter Radialbelastung:

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_E \text{ gesamt}}\right)^3 \times 50 \dots (9)$$

f_T: Temperaturfaktor f_C: Kontaktfaktor f_W: Belastungsfaktor Bei gleichzeitiger Radial- und Drehmomentbelastung: Zuerst muss die äquivalente Radialbelastung und dann die nominelle Lebensdauer berechnet werden:

$$P_{E} = P_{C} + \frac{4 \times T_{C} \times 10^{3}}{i \times dp \times \cos \alpha} \dots (10)$$

P_E : äquivalente Radialbelastung (N)

 $\cos lpha$: Kontaktwinkel

i : Anzahl der tragenden Laufrillenpaare

dp : Kugelmittenkreis-Durchmesser (mm)

Kontaktwinkel und Laufrillenpaare einzelner Typen: Typ LBS:

 $\cos \alpha$: 45°

ab Baugröße LBS15 : *i*= 3

Typ LT: $\cos \alpha : 70^{\circ}$

bis Baugröße LT13 : i= 2 ab Baugröße LT16 : i= 3

 Momentbelastung bei einer oder mehreren zusammengesetzten Muttern: Zuerst muss die äquivalente Radialbelastung und daraus dann die nominelle Lebensdauer berechnet werden.

$$P_u = K \times M_A$$
(11)

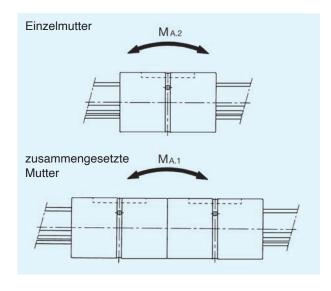
P_u: äquivalente Radialbelastung (durch äußeres Moment) (N) K: Äquivalenzfaktor (siehe Tab. 5 und 6) (1/mm) M_A: Momentbelastung (Nmm)

Anm.: Diese Berechnungsformel setzt voraus, dass M kleiner ist als das zulässige statische Moment.

 Bei gleichzeitiger Radial- (P_C) und Drehmomentbelastung (T_C) sowie zusätzlicher äußerer Momentbelastung (M_A) pro Mutter ist zu der Belastung P_E eine Belastung P_U zu addieren. Aus dieser Summe wird dann die nominelle Lebensdauer ermittelt (siehe Formel 9).

Aus der nominellen Lebensdauer wird die Lebensdauer in Stunden bei konstanter Hublänge und gleicher Anzahl von Hüben pro Minute ermittelt.

$$L_h = \frac{L \times 10^3}{2 \times \ell_S \times n_1 \times 60}$$
 (12)


Lh: Lebensdauer in Stunden (h) $\ell_{\rm S}$: Hublänge (m)

n₁: Hubfrequenz (min⁻¹)

Äquivalenzfaktoren

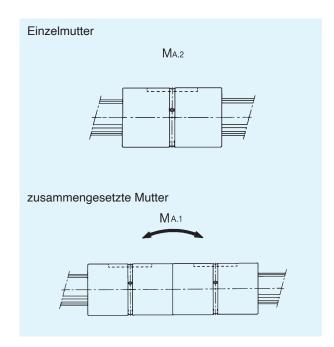
In den Tabellen 5 und 6 sind die Äquivalenzfaktoren zur Ermittlung der äquivalenten Radialbelastung für einzelne Anordnungen unter Momentbelastung angegeben.

Äquivalenzfaktoren für Kugelkeilwellen

Tab. 5 Äquivalenzfaktoren

Baugröße	Äquivaler	nzfaktor K					
Daugione	Einzelmutter	zusammengesetzte Mutter					
LBS 15	0,22	0,022					
LBS 20	0,24	0,030					
LBST 20	0,17	0,027					
LBS 25	0,19	0,026					
LBST 25	0,14	0,023					
LBS 30	0,16	0,022					
LBST 30	0,12	0,020					
LBS 40	0,12	0,017					
LBST 40	0,10	0,016					
LBS 50	0,11	0,015					
LBST 50	0,09	0,014					
LBST 60	0,08	0,013					
LBS 70	0,10	0,013					
LBST 70	0,08	0,012					
LBS 85	0,08	0,011					
LBST 85	0,07	0,010					
LBS 100	0,08	0,009					
LBST 100	0,06	0,009					
LBST 120	0,05	0,008					
LBST 150	0,045	0,006					

Einheit: mm-1


Anm.: • Die Werte für LBF sind die gleichen wie für LBS.

- Die Werte für LBR und LBH sind die gleichen wie für LBST.
- Der Wert für LBF60 ist der gleiche wie für LBST60.

Einheit: mm-1

Äquivalenzfaktoren für Kugelnutwellen

Tab. 6 Äquivalenzfaktoren

	Äquivalenzfaktor K								
Baugröße	Einzelmutter	zusammengesetzte Mutter							
LT 4	0,65	0,096							
LT 5	0,55	0,076							
LT 6	0,47	0,060							
LT 8	0,47	0,058							
LT 10	0,31	0,045							
LT 13	0,30	0,042							
LT 16	0,19	0,032							
LT 20	0,16	0,026							
LT 25	0,13	0,023							
LT 30	0,12	0,020							
LT 40	0,088	0,016							
LT 50	0,071	0,013							
LT 60	0,070	0,011							
LT 80	0,062	0,009							
LT 100	0,057	0,008							

Anm.: Die Werte für LT gelten auch für LF.

Genauigkeit

Genauigkeitsspezifizierung

Die Genauigkeitsklassen der verdrehgesicherten Wellenführungen werden entsprechend der Laufgenauigkeit der Mutter unter Berücksichtigung des Lagerzapfens der Welle eingeteilt. Folgende Klassen sind definiert: Normalklasse (kein Symbol), Hochgenaue Klasse (H) und Präzisionsklasse (P). Abb. 1 zeigt die für die Genauigkeitsmessung relevanten Meßpunkte.

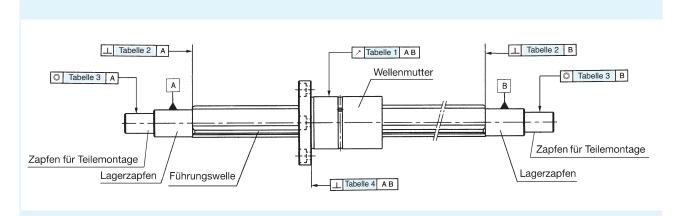


Abb. 1 Relevante Meßpunkte für Toleranzen

Genauigkeitsklassen

Die Tabellen 1-4 geben die Toleranzen für die einzelnen Wellenführungen an. Der Genauigkeitsstandard wird für die Baureihen LBS und LT verwendet.

Tab. 1 Rundlauf der Außenfläche der Wellenmutter zum Lagerzapfen

	Genauigkeit		max. Rundlauf																						
Gesamt- länge der Welle (mm)	Nenndurch- messer der Welle (mm)					13 ~ 20			25 ~ 32			40, 50			60, 80			85 ~ 120			150				
über	unter	Normal	Н	Р	Normal	Н	Р	Normal	Н	Р	Normal	Η	Р	Normal	Н	Р	Normal	Н	Р	Normal	Н	Р	Normal	Н	Р
-	200	72	46	26	59	36	20	56	34	18	53	32	18	53	32	16	51	30	16	51	30	16	-	-	-
200	315	133	89 ¹⁾	-	83	54	32	71	45	25	58	39	21	58	36	19	55	34	17	53	32	17	-	-	-
315	400	-	-	-	103	68	-	83	53	31	70	44	25	63	39	21	58	36	19	55	34	17	-	-	-
400	500	-	-	-	123	-	-	95	62	38	78	50	29	68	43	24	61	38	21	57	35	19	46	36	19
500	630	-	-	-	-	-	-	112	-	-	88	57	34	74	47	27	65	41	23	60	37	20	49	39	21
630	800	-	-	-	-	-	-	-	-	-	103	68	42	84	54	32	71	45	26	64	40	22	53	43	24
800	1000	-	-	-	-	-	-	-	-	-	124	83	-	97	63	38	79	51	30	69	43	24	58	48	27
1000	1250	-	-	-	-	-	-	-	-	-	-	-	-	114	76	47	90	59	35	76	48	28	63	55	32
1250	1600	-	-	-	-	-	-	-	-	-	-	-	-	139	93	-	106	70	43	86	55	33	80	65	40
1600	2000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	128	86	54	99	65	40	100	80	50
2000	2500	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	156	-	-	117	78	49	125	100	68
2500	3000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	143	96	61	150	129	84

¹⁾ Der Wert gilt nicht bei einem Nenndurchmesser der Welle von 4 mm.

Tab. 2 Rechtwinkligkeitstoleranz der Lagerschulter zum Lagerzapfen

Einheit: μ m

Genauigkeit	Recl	ntwinkligkeit (n	nax.)						
Bau- größe	Normal- klasse	Hochgenaue Klasse (H)	Präzisions- klasse (P)						
4 5 6 8 10	22	9	6						
13 15 16 20	27	11	8						
25 30 32	33	13	9						
40 50	39	11							
60 70 80	46	46 19				19			
85 100 120	54	54 22							
150	63	25	18						

Tab. 4 Rechtwinkligkeitstoleranz der Flanschanschlussfläche im Bezug auf die Lagerzapfen

Einheit: μ m

Genauigkeit	Recl	ntwinkligkeit (m	nav)
Bau- größe	Normal- klasse	Hochgenaue Klasse (H)	Präzisions- klasse (P)
6 8	27	11	8
10 13	33	13	9
15 16 20 25 30	39	16	11
40 50	46	19	13
60 70 80 85	54	22	15
100	63	25	18

Anm.: Nicht anwendbar für die Type LTR.

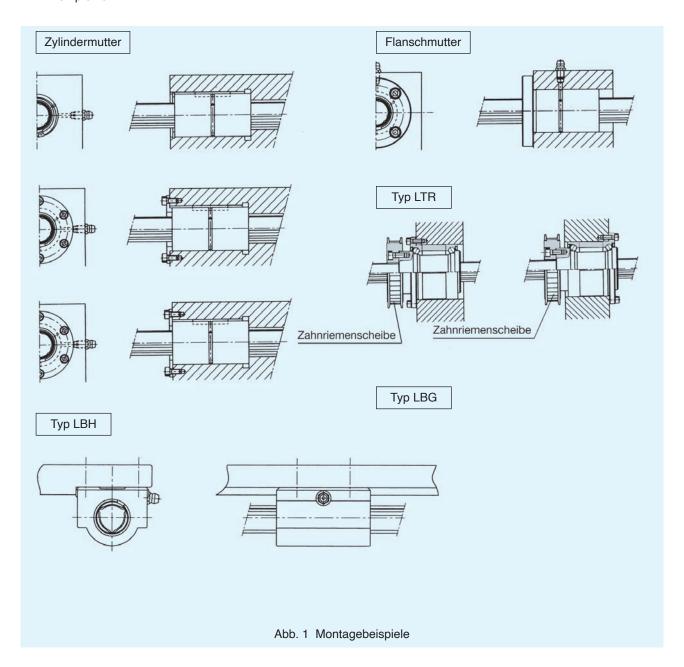
Tab. 3 Koaxialitätstoleranz des Anschlusszapfens zum Lagerzapfen

Genauigkeit	K	oaxialität (max	۲.)
Bau- größe	Normal- klasse	Hochgenaue Klasse (H)	Präzisions- klasse (P)
4 5 6 8	33	14	8
10	41	17	10
13 15 16 20	46	19	12
25 30 32	53	22	13
40 50	62	15	
60 70 80	73	29	17
85 100 120	86	34	20
150	100	40	23

Montagehinweise

Passung

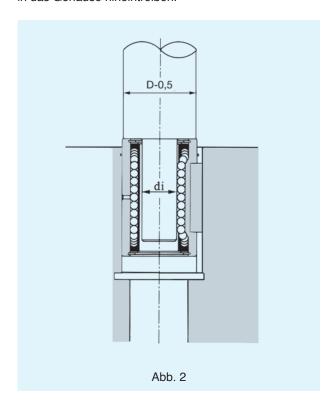
Zwischen Mutter und Gehäuse wird im allgemeinen eine Übergangspassung und bei geringeren Anforderungen an die Genauigkeit eine Spielpassung gewählt.

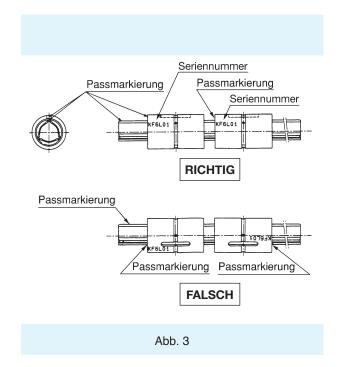

Tab. 1 Gehäusepassung

Passung	Normale Einsatzbedingungen	H7
Muttergehäuse	Für spielfreien Lauf	J6

Anm.: H7 wird für die Passung bei dem Typ LTR empfohlen.

Montage


Montagebeispiele für Muttern in verschiedenen Ausführungen finden Sie in der unteren Abbildung. In axialer Richtung reicht eine axiale Fixierung der Mutter aus. Eine Passung ist deshalb nicht unbedingt erforderlich. Wird doch eine Passung gewählt, darf die Mutter nicht hineingepreßt werden, weil sonst ihre Funktion beeinträchtigt werden könnte.


Montage der Mutter

Zur Montage der Mutter in das Gehäuse ist ein Dorn zu benutzen, damit die Dichtungen nicht beschädigt werden (siehe Abb. 2). Bitte die Mutter vorsichtig und gleichmäßig in das Gehäuse hineintreiben.

Montage der Welle

Beim Aufziehen der Mutter auf die Welle ist auf die richtige Lage der Passmarkierungen zu achten (siehe Abb. 3). Die Welle vorsichtig und ohne Verdrehen einsetzen. Bei gewaltsamen Vorgehen können Kugeln aus der Mutter herausgedrückt werden. Ist die Mutter vorgespannt, muss die Welle vorher mit Schmierfett versehen werden.

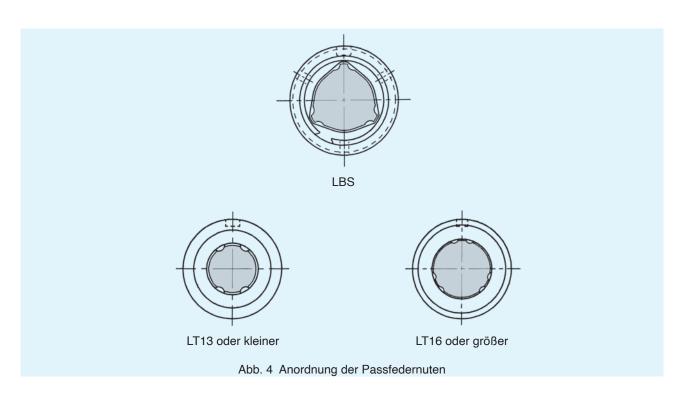
Tab. 2 Dornmaße für Typ LBS

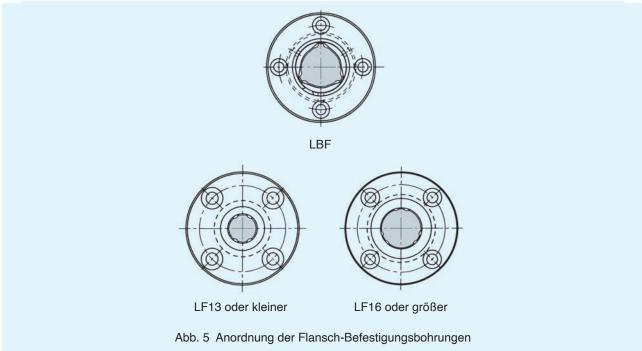
Baugröße	15	20	25	30	40	50	60	70	85	100	120	150
di	12,5	16,1	20,3	24,4	32,4	40,1	47,8	55,9	69,3	83,8	103,8	131,8

Tab. 3 Dornmaße für Typ LT

Baugröße	6	8	10	13	16	20	25	30	40	50	60	80	100
di	5,0	7,0	8,5	11,5	14,5	18,5	23	28	37,5	46,5	56	75,5	94,5

Einheit: mm

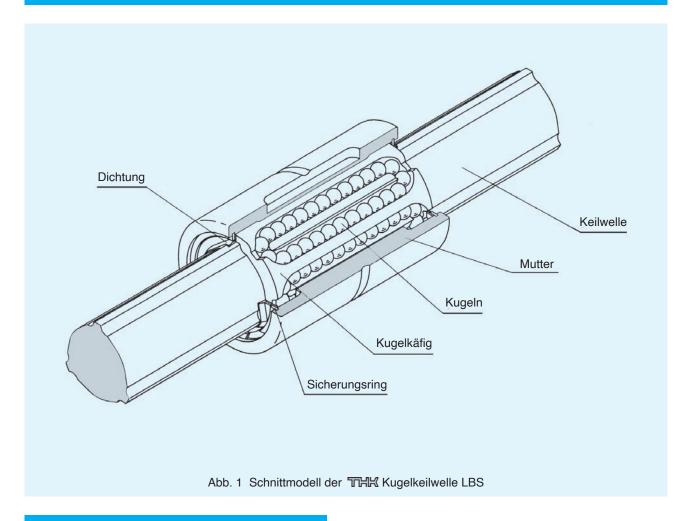



Lage der Passfedernut und Befestigungsbohrungen

Die Passfedernut in den verschiedenen Muttertypen ist zentral über zwei tragenden Kugelreihen angeordnet (siehe Abb. 4).

Die gewünschte Lage der Passfedernut in der Welle sollte bei der Bestellung angegeben werden.

Von den vier Befestigungsbohrungen im Flansch liegt jeweils eine in der Mitte zwischen zwei tragenden Kugelreihen (siehe Abb. 5).



THK Kugelkeilwelle LBS

Aufbau und Merkmale

Die drei Laufrillenpaare der Keilwelle befinden sich an den um 120° versetzten Keilflanken längs der Welle. Die Laufrillen selbst sind präzisionsgeschliffen.

Die Kugelreihen werden durch einen Käfig innen an der Mutter geführt und umgelenkt. So wird eine ruhige und stabile Laufeigenschaft erzielt. Ein weiterer Vorteil des Käfigs besteht darin, dass die Kugeln bei Trennung der Mutter von der Welle nicht herausfallen können.

Wirkt ein Drehmoment auf die Mutter, tragen die drei in Lastrichtung angeordneten Kugelreihen gleichmäßig die Belastung, so dass sich der Drehpunkt selbst einstellt. Bei umgekehrtem Drehmoment tragen die entgegengesetzten Kugelreihen die Belastung.

Winkelspielfrei

Aufgrund der beschriebenen Bauweise kann das Winkelspiel (Spiel in Drehrichtung) auf ein Minimum reduziert werden. Um das Winkelspiel zu beseitigen und die Steifigkeit zu erhöhen, kann eine Vorspannung aufgebracht werden.

Im Gegensatz zu konventionellen Lagern mit Kreis- oder Gotikbogen-Laufrillen ist es hierbei nicht erforderlich, für eine Vorspannung zwei Muttern gegeneinander zu verdrehen bzw. zu verspannen. So ist eine kompakte Bauweise möglich.

Hohe Steifigkeit und präzise Positionierung

Durch den großen Flächenkontakt der Laufkugeln in der Laufrille und die Möglichkeit, eine Vorspannung aufzubringen, wird die Einfederung minimal gehalten. Somit wird eine hohe Steifigkeit und präzise Positionierung gewährleistet.

Geeignet für schnelle Linearbewegung und Rotation

Aufgrund der geringen Reibungskräfte, der ausgezeichneten Fettrückhaltung und der steifen Kugelkäfige sind Geschwindigkeiten von über 150 m/min über lange Zeiträume bei Fettschmierung möglich.

Die fast gleichen Radialabstände der tragenden und nicht tragenden Kugeln ergeben geringe Fliehkrafteinflüsse auf die Kugeln und ermöglichen stabile Laufeigenschaften.

Kompakter Aufbau

Der Kugelumlauf der nicht tragenden Kugeln liegt nahezu in gleicher Höhe wie die belasteten Kugeln. Daher ist eine kompakte Bauweise der Mutter mit kleinem Außendurchmesser möglich.

Einfache Montage

Die Kugeln in der Mutter sind durch einen Käfig gesichert und fallen auch nicht heraus, wenn die Mutter von der Keilwelle abgezogen wird. Dieses erleichtert die Montage in vielen Anwendungsfällen. Zudem wird die Wartung und Überprüfung vereinfacht.

Einsatz als Kugelumlaufbuchse bei Schwerlastbetrieb möglich

Der Radius der Kugeln entspricht nahezu dem der Laufrillen, so dass sich verhältnismäßig große Kugelkontaktflächen für hohe radiale Belastungen ergeben.

Zwei parallele Wellen können durch eine einzige Wellenführung ersetzt werden

Da gleichzeitig Dreh- und Radialbelastungen aufgenommen werden können, sind kompakte Konstruktionen möglich.

Vorteile gegenüber Systemen mit Kugelumlaufbuchsen:

- geringer Bauraum (eine Welle statt zwei Wellen)
- einfachere Montage

Anwendungen

Verdrehgesicherte Wellenführungen sind hochbelastbare Führungssysteme für vielfältige Anwendungszwecke. Dazu gehören Arme und Säulen von Industrierobotern, automatische Bestücker, Transfermaschinen, automatische Transporteinrichtungen, Reifen-Auswuchtmaschinen, Spindeln für Punkt-Schweißmaschinen, Führungswellen für Hochgeschwindigkeits-Lackiereinrichtungen, Nietmaschinen, Drahtwickelmaschinen, Aufspannköpfe von Funkenerosionsmaschinen, Antriebsspindeln von Schleifmaschinen, Wechselgetriebe und Präzisionsschaltspindeln.

Typen und Ausführungen

Bei diesem Typ hat die Mutter eine zylindrische Bauform für eine äußerst kompakte Bauweise. Die Drehmoment- übertragung erfolgt hier mittels einer Passfeder. Dieser Außenring der Mutter ist nicht gehärtet, daher kann eine weitere Bearbeitung erfolgen.

Der Typ entspricht im Außendurchmesser dem Typ LBS, die Mutter ist jedoch länger und daher stärker belastbar. Dieser Typ ist ideal zur Übertragung von hohen Drehmomenten auf engstem Raum und bei Verdrehbelastungen mit den entsprechenden Momenten.

Über den Flansch ist eine einfache Montage der Mutter an ein Gehäuse möglich. Dieses ist die optimalste Einbauart, wenn das Einbaugehäuse schmal baut oder man eine Verformung des Gehäuses durch die Bearbeitung für eine Passfeder befürchtet.

Weiterhin kann mit einem Spannstift die Mutter im Anbauteil genau fixiert und gegen Verdrehen gesichert werden.

Dieser Typ basiert auf dem Schwerlasttyp LBST. Er eignet sich besonders für den Einsatz in Industrierobotern (speziell in den Roboterarmen) und andere Anwendungen mit Momentbelastungen.

Die steife, blockförmige Mutter benötigt kein Einbaugehäuse und kann direkt montiert werden. Mit ihr werden einfach kompakte und hochsteife Führungssysteme realisiert.

Spiel in Drehrichtung

Das Spiel in Drehrichtung hat einen großen Einfluss auf die Genauigkeit und Steifigkeit der Mutter. Daher muss eine geeignete Vorspannung für die geplante Anwendung ausgesucht werden. Im Allgemeinen werden vorgespannte Kugelkeilwellen eingesetzt.

Bei Einsatz mit ruckweiser Rotationsbewegung oder hoher Hubfrequenz wird die Mutter Stößen und Vibrationen ausgesetzt. Unter diesen Bedingungen verbessert die Vorspannung die Genauigkeit und letztendlich die Lebensdauer.

Zur Auswahl der optimalen Vorspannung fragen Sie bitte '디서K'.

Tab. 1 Auswahl der Vorspannungsklasse

		Anwendungsbedingungen	Anwendungsbeispiele
	СМ	 Betrieb mit Vibrationen und Stoßbelastungen. Hohe Steifigkeit erforderlich. Mutter ist Verdrehbelastungen ausgesetzt. 	Lenkwellen für Baufahrzeuge, Wellen von Punkt- schweißmaschinen, Schaltspindeln für Werkzeughalter von Drehmaschinen
Vor- spannungs- klasse	CL	 Betrieb mit Überhang- oder Verdrehbelastungen. Hohe Wiederholgenauigkeit erforderlich. Betrieb unter Wechselbelastungen. 	Arme für Industrieroboter, automatische Ladevorrichtungen, Führungswellen für Lackierautomaten, Hauptspindeln für Funkenerosionsmaschinen, Wellen für Führungsgestelle, Hauptspindeln von Bohrmaschinen.
	Normal	 Für gleichmäßigen Betrieb mit geringer Antriebskraft. Betrieb mit stets gleichgerichtetem Drehmoment. 	Messinstrumente, automatische Zeichenmaschinen, Dynanometer, Drahtwickelmaschinen, Schweißautomaten, Verpackungsmaschinen.

Tab. 2 Spiel der Kugelkeilwelle in Drehrichtung

Einheit: μ m

Symbol	Normal	Leichte Vorspannung	Mittlere Vorspannung
Baugröße	kein Symbol	CL	СМ
15	-3 ~ +2	-9 ~ -3	-15 ~ -9
20 25 30	-4 ~ + 2	-12 ~ -4	-20 ~ -12
40 50 60	-6 ~ +3	-18 ~ -6	-30 ~ -18
70 85	-8 ~ +4	-24 ~ -8	-40 ~ -24
100 120	-10 ~ +5	-30 ~ -10	-50 ~ -30
150	-15 ~ +7	-40 ~ -15	- 70 ∼ - 40

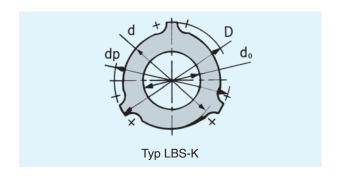
Anm.: Bei Normalspiel wird kein Kennzeichen verwendet. Die Kennzeichen für mittlere Vorspannung CM und leichte Vorspannung CL sind bei der Bestellung mit anzugeben.

Das Spiel in Drehrichtung ist auf den Kugelmittenkreis dp bezogen.

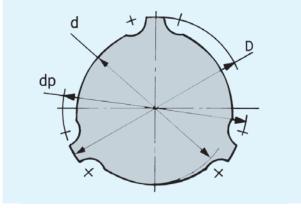
Keilwellen

Es gibt drei verschiedene Typen von Keilwellen. Massive Präzisions-Keilwellen, hohle Keilwellen und Keilwellen ohne Endenbearbeitung. Spezialgefertigte Keilwellen werden nach Vorgabe auf Bestellung gefertigt.

Standard-Keilwellen sind ab Lager preisgünstig lieferbar.


Keilwellen-Querschnitte

Die verschiedenen Querschnittsformen der Keilwellen gehen aus Tabelle 3 hervor. Sollen die Wellenenden bearbeitet werden, sollte der maximale Durchmesser nicht größer als der Kerndurchmesser d gewählt werden.


Bohrungsdurchmesser von hohlen Standard-Keilwellen

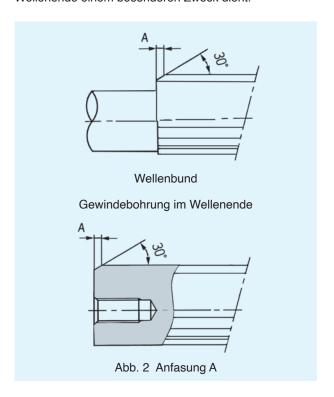
Tab. 4 Bohrungsdurchmesser von

Tabelle 4 gibt die Abmessungen und Gewichte von hohlen Standard-Keilwellen an. Hohle Keilwellen sind besonders geeignet zum Durchführen von Leitungen und Kabeln sowie zur Belüftung.

Baugröße	Bohrungs- durchmesser d ₀ [mm]	Gewicht [kg/m]
20	6	1,58
25	8	2,3
30	12	2,9
40	18	4,9
50	24	7,0
60	30	10,0
70	35	13,7
85	45	19,5
100	56	25,7
120	60	47,3
150	80	77,1

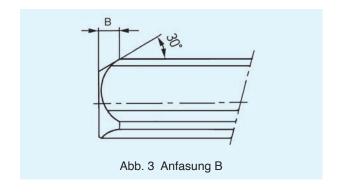
Tab. 3 Abmessungen der Keilwellenquerschnitte

· ·		•										
Baugröße	15	20	25	30	40	50	60	70	85	100	120	150
Kerndurchmesser d	11,7	15,3	19,5	22,5	31,0	39,0	46,5	54,5	67,0	81,0	101,0	130,0
Außendurchmesser D	14,5	19,7	24,5	29,6	39,8	49,5	60,0	70,0	84,0	99,0	117,0	147,0
Kugelmittenkreis dp	15	20	25	30	40	50	60	70	85	100	120	150



Anfasung der Wellenenden

Damit die Muttern problemlos auf die Keilwellen gezogen werden können, werden die Enden angefast, sofern nicht bei der Bestellung eine andere Ausführung gewünscht wird.

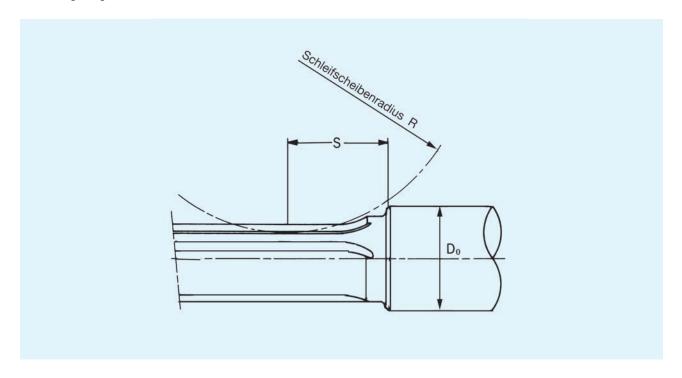

Anfasung A

Die Anfasung A erfolgt entweder am Abschlussbund der Keilverzahnung, an der Stirnfläche bei vorhandener Bohrung bzw. Gewindebohrung (siehe Abb. 2) oder wenn das Wellenende einem besonderen Zweck dient.

Anfasung B

Dient das Wellenende keinem besonderen Zweck, erfolgt die Anfasung mit dem Maß B.

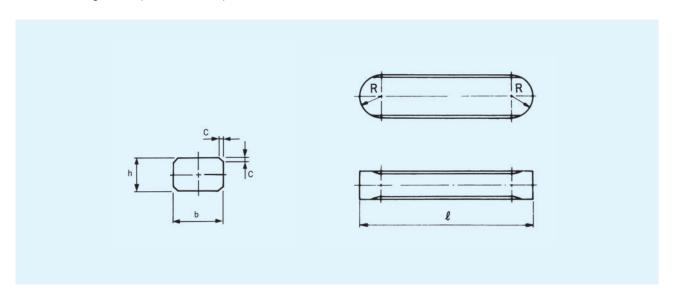
Tab. 5 Anfasung der Keilwellenenden


Baugröße	15	20	25	30	40	50	60	70	85	100	120	150
Anfasung A	1,0	1,0	1,5	2,5	3,0	3,5	5,0	6,5	7,0	7,0	7,5	8,0
Anfasung B	3,5	4,5	5,5	7,0	8,5	10,0	13,0	15,0	16,0	17,0	17,0	18,0

Schleifscheibenauslauf bei der Fertigung von Keilwellenverzahnungen

Bei spezialgefertigten Keilwellen mit einem Zapfen bzw. einem Flansch am Ende oder in der Mitte der Welle, dessen Durchmesser größer als der Kerndurchmesser d ist, können die Laufrillen aus fertigungstechnischen Gründen nicht vollständig ausgeführt werden.

Tabelle 6 zeigt die nicht zu bearbeitende Länge S unter Berücksichtigung des Schaftdurchmessers D_0 . Die hier angegebenen Längen gelten nicht bei Wellenlängen über 1.500 mm. Fragen Sie bitte in diesem Fall THM.


Tab. 6 Unvollständig bearbeitete Länge S

Schaftdurch- messer D ₀	15	20	25	30	35	40	50	60	80	100	120	140	160	180	200
15	23	35	42	47	52	_	_	_	_	_	_	_	_	_	_
20	_	25	36	43	48	53	_	_	_	_	_	_	_	_	_
25	_	_	32	46	55	62	73	_	_	_	_	_	_	_	_
30	_	_	_	35	48	56	69	78	_	_	_	_	_	_	_
40	_	_	_	_	_	38	59	71	88	_	_	_	_	_	_
50	_	_	_	_	_	_	42	61	82	96	_	_	_	_	_
60	_	_	_	_	_	_	_	45	74	91	102	_	_	_	_
70	_	_	_	_	_	_	_	_	64	85	98	108	_	_	_
85	_	_	_	_	_	_	_	_	34	72	90	102	_	_	_
100	_	_	_	_	_	_	_	_	_	70	110	134	153	_	_
120	_	_	_	_	_	_	_	_	_	_	72	112	137	155	_
150	_	_	_	_	_	_	_	_	_	_	_	42	103	133	153

Zubehör

Die Kugelkeilwellen LBS und LBST sind mit einer Standard-Passfeder ausgerüstet (siehe Tabelle 7).

Tab. 7 Standard-Passfedern für LBS und LBST

Baugröße		Breite	Höhe			Länge	R	С
Daugrobe	b	Toleranz (p7)	h	Toleranz (h9)	ℓ	Toleranz (h12)	n	O
LBS 15	3,5		3,5		20	0	1,75	
LBS 20 LBST 20	4	+0,024 +0,012	4	0 -0,030	26	-0,210	2	0,5
LBS 25 LBST 25	5		5		33	0	2,5	0,5
LBS 30 LBST 30	7	+0,030	7		41	-0,250	3,5	
LBS 40 LBST 40	10	+0,015	8	0 -0,036	55	- 0 -0,300 -0,350	5	1,2
LBS 50 LBST 50	15	+0,036 +0,018	10		60		7,5	
LBST 60 LBS 70 LBST 70	18		12		68		9	
LBS 85 LBST 85	20		13	0 -0,043	80		10	
LBS 100 LBST 100	28	+0,043 +0,022	18		93		14	
LBST 120	28		18		123	0	14	
LBST 150	32	+0,051 +0,026	20	0 -0,052	157	-0,400	16	2

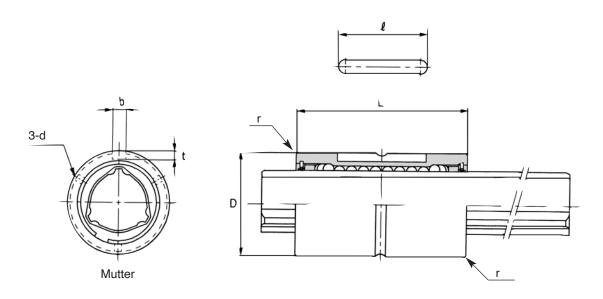
Aufbau der Bestellbezeichnung

Die Bestellbezeichnung setzt sich bei Kugelkeilwellen wie folgt zusammen:

2 LBS50 UU CL + 1500L Symbol für Keilwellenausführung kein Symbol : massive Keilwelle : hohle Standard-Keilwelle M : Spezialwerkstoff F : Oberflächenbehandlung (Vernickelung) Ε : zusätzliche Bearbeitung der Welle (Bei mehr als einer Angabe bitte die Symbole in alphabetischer Reihenfolge angeben.) Symbol für Genauigkeitsklasse kein Symbol: Normalklasse : hochgenaue Klasse Р : Präzisionsklasse Keilwellen-Gesamtlänge (mm) Symbol für Mutternausführung kein Symbol: Standardausführung : Spezialwerkstoff F : Oberflächenbehandlung (Vernickelung) Ε : zusätzliche Bearbeitung der Mutter (Bei mehr als einer Angabe bitte die Symbole in alphabetischer Reihenfolge angeben.) Symbol für Spiel in Drehrichtung (siehe S. 28) kein Symbol: Standardausführung CL : leichte Vorspannung CM : mittlere Vorspannung Symbol für Dichtungen kein Symbol: ohne Dichtungen UU : beidseitig mit Gummidichtungen U : einseitig mit Gummidichtung Zusatzsymbole kein Symbol: mit Kunststoffkäfig : Stahlkäfig für hohe Temperatur Baugruppe/-größe Anzahl der Muttern auf einer Welle (bei einer Mutter keine Angabe)

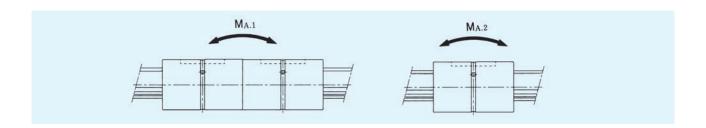
LBS

(für mittlere Belastung)



		Abmessungen Mutter ²⁾								
Baugröße ¹⁾	Außer D	ndurchmesser Toleranz	Länge L Toleranz		Abmessu b H8	ungen Pass t +0,05 t 0	sfedernut 	r	Schmier- bohrung d	
LBS 15	23	0 -0,013	40	0	3,5	2	20	0,5	2	
LBS 20	30	0	50	-0,2	4	2,5	26	0,5	2	
LBS 25	37	0 -0,016	60		5	3	33	0,5	2	
LBS 30	45	0,010	70		7	4	41	1,0	3	
LBS 40	60	0	90	0 -0,3	10	4,5	55	1,0	3	
LBS 50	75	-0,019	100	0,0	15	5	60	1,5	4	
LBS 70	100	0	110		18	6	68	2,0	4	
LBS 85	120	-0,022	140	0	20	7	80	2,5	5	
LBS 100	140	0 -0,025	160	-0,4	28	9	93	3,0	5	

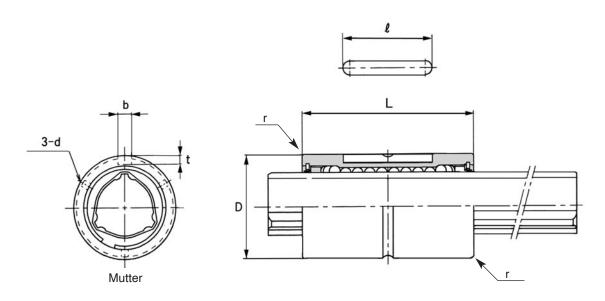
¹⁾ Zur Bestellbezeichnung siehe S. 33.


²⁾ Die Muttern der Baugrößen LBS20 bis 70 sind mit Käfigen aus synthetischem Kunststoff für geringe Geräuschentwicklung ausgestattet. Bei Betrieb über 80° C sind Metallkäfige einzusetzen (Symbol A in der Bestellbezeichnung). Für die Baugröße LBS15 sind Metallkäfige nicht erhältlich.

Torsionsbelastung		Trag	ızahl	_	statisches nent	Gewicht	
C _T [Nm]	C _{OT} [Nm]	C [kN]	C ₀ [kN]	M _{A.1} 3) [Nm]	M _{A.2} 4) [Nm]	Mutter [kg]	Welle [kg/m]
30,4	74,5	4,4	8,4	185	25,4	0,06	1,0
74,5	160	7,8	14,9	408	60,2	0,14	1,8
154	307	13,0	23,5	760	118	0,25	2,7
273	538	19,3	33,8	1270	203	0,44	3,8
599	1140	31,9	53,4	2640	387	1,0	6,8
1100	1940	46,6	73,0	4050	594	1,7	10,6
2190	3800	66,4	102	6530	895	3,1	21,3
3620	6360	90,5	141	12600	2000	5,5	32,0
5910	12600	126	237	20600	3460	9,5	45,0

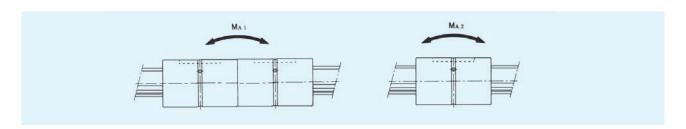
M_{A.1} ist das zulässige statische Moment in Axialrichtung für zwei auf einer Keilwelle zusammengesetzte Muttern (siehe Abb. unten).
 M_{A.2} ist das zulässige statische Moment in Axialrichtung für eine Mutter auf einer Keilwelle (siehe Abb. unten).
 Hinweis: Für eine hohe Genauigkeit sollte der Typ LBST bzw. zwei Muttern des Typs LBS in engem Kontakt anstelle einer Mutter des Typs LBS eingesetzt werden.

LBST


(für schwere Belastung)

Davier (10 a1)	Abmessungen Mutter ²⁾ Außendurchmesser Länge Abmessungen Passfedernut								Schmier-
Baugröße ¹⁾	Außer	laurenmesser	Länge		b	+0,05			bohrung
	D	Toleranz	L	Toleranz	H8	, 0	ℓ	r	d
LBST 20	30	0	60	0 -0,2	4	2,5	26	0,5	2
LBST 25	37	0 -0,016	70		5	3	33	0,5	2
LBST 30	45	0,010	80		7	4	41	1,0	3
LBST 40	60	0	100	0	10	4,5	55	1,0	3
LBST 50	75	-0,019	112	-0,3	15	5	60	1,5	4
LBST 60	90	0	127		18	6	68	1,5	4
LBST 70	100	0 -0,022	135		18	6	68	2,0	4
LBST 85	120	0,022	155	0	20	7	80	2,5	5
LBST 100	140	0	175	-0,4	28	9	93	3,0	5
LBST 120	160	-0,025	200	0	28	9	123	3,5	6
LBST 150	205	0 -0,029	250	-0,5	32	10	157	3,5	6

¹⁾ Zur Bestellbezeichnung siehe S. 33.


²⁾ Die Muttern der Baugrößen LBST20 bis 70 sind mit K\u00e4figen aus synthetischem Kunststoff f\u00fcr geringe Ger\u00e4usch-entwicklung ausgestattet. Bei Betrieb \u00fcber 80° C sind Metallk\u00e4fige einzusetzen (Symbol A in der Bestellbezeichnung). F\u00fcr die Baugr\u00f6\u00dfen LBST70 oder kleiner sind Metallk\u00e4fige nicht erh\u00e4ltlich. Bestellen Sie bitte in diesem Fall den Typ LBS.

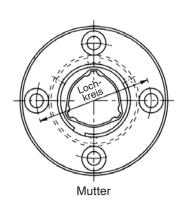
Einheit: mm

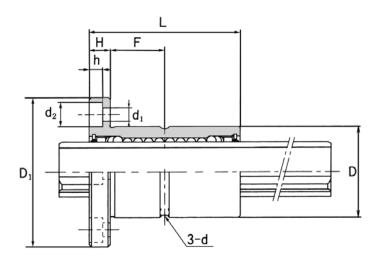
Torsionsbelastung		Trag	zahl	Zulässiges Mon	statisches nent	Gewicht	
C _T [Nm]	C _{OT} [Nm]	C [kN]	C ₀ [kN]	M _{A.1³⁾ [Nm]}	M _{A.2⁴⁾ [Nm]}	Mutter [kg]	Welle [kg/m]
90,2	213	9,4	20,1	632	103	0,17	1,8
176	381	14,9	28,7	1060	171	0,29	2,7
312	657	22,5	41,4	1740	295	0,50	3,8
696	1420	37,1	66,9	3540	586	1,1	6,8
1290	2500	55,1	94,1	5610	941	1,9	10,6
1870	3830	66,2	121	8280	1300	3,3	15,6
3000	6090	90,8	164	11800	2080	3,8	21,3
4740	9550	119	213	17300	3180	6,1	32,0
6460	14400	137	271	25400	4410	10,4	45,0
8380	19400	148	306	32400	5490	12,9	69,5
13900	32200	196	405	55400	8060	28,0	116,6

M_{A.1} ist das zulässige statische Moment in Axialrichtung für zwei auf einer Keilwelle zusammengesetzte Muttern (siehe Abb. unten).
 M_{A.2} ist das zulässige statische Moment in Axialrichtung für eine Mutter auf einer Keilwelle (siehe Abb. unten).

LBF

(für mittlere Belastung)




				Abme	ssunge	n Mutter ²⁾				
Baugröße¹)	Außer	ndurchmesser		Länge	ı	Flansch	Н	F	Schmier- bohrung	Loch- kreis
	D	Toleranz	L	Toleranz	D ₁	Toleranz			d	KICIS
LBF 15	23	0 -0,013	40	0	43		7	13	2	32
LBF 20	30	0	50	-0,2	49		7	18	2	38
LBF 25	37	0 -0,016	60		60	0 -0,2	9	21	2	47
LBF 30	45	0,010	70		70		10	25	3	54
LBF 40	57		90	О	90		14	31	3	70
LBF 50	70	0 -0,019	100	-0,3	108		16	34	4	86
LBF 60	85	0,013	127		124	0	18	45,5	4	102
LBF 70	95	0	110		142	-0,3	20	35	4	117
LBF 85	115	-0,022	140	0	168		22	48	5	138
LBF 100	135	0 -0,025	160	-0,4	195	0 -0,4	25	55	5	162

¹⁾ Zur Bestellbezeichnung siehe S. 33.

²⁾ Die Muttern der Baugrößen LBF15 bis 70 sind durchweg mit synthetischen Kunststoffkäfigen für geringe Geräuschentwicklung ausgestattet. Bei Betrieb über 80° C sind Metallkäfige einzusetzen (Symbol A in der Bestellbezeichnung). Für die Baugrößen LBF15 und LBF60 sind keine Metallkäfige erhältlich.

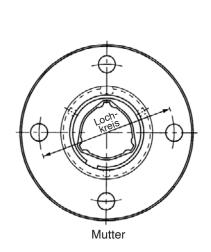
Befestigungs-	Torsions	pelastung	Trag	zahl	Zulässiges Mor	statisches nent	Gewicht			
bohrung $d_1 \times d_2 \times h$	C _T [Nm]	C _{0T} [Nm]	C [kN]	C ₀ [kN]	M _{A.1³⁾ [Nm]}	M _{A.2⁴⁾ [Nm]}	Mutter [kg]	Welle [kg/m]		
$4,5 \times 8 \times 4,4$	30,4	74,5	4,4	8,4	185	25,4	0,11	1,0		
$4,5 \times 8 \times 4,4$	74,5	160	7,8	14,9	408	60,2	0,20	1,8		
$\overline{5,5 \times 9,5 \times 5,4}$	154	307	13,0	23,5	760	118	0,36	2,7		
$6,6 \times 11 \times 6,5$	273	538	19,3	33,8	1270	203	0,60	3,8		
9 × 14 × 8,6	599	1140	31,9	53,4	2640	387	1,2	6,8		
$11\times17,5\times11$	1100	1940	46,6	73,0	4050	594	1,9	10,6		
11 × 17,5 × 11	1870	3830	66,2	121	8280	1300	3,5	15,6		
14 × 20 × 13	2190	3800	66,4	102	6530	895	3,6	21,3		
$16 \times 23 \times 15,2$	3620	6360	90,5	141	12600	2000	6,2	32		
$18 \times 26 \times 17,5$	5910	12600	126	237	20600	3460	11,0	45		

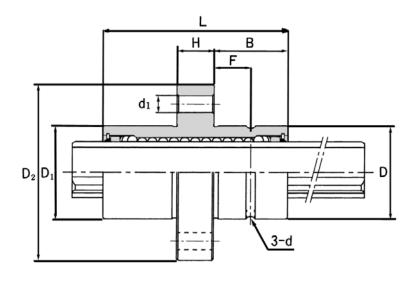
³⁾ M_{A.1} ist das zulässige statische Moment in Axialrichtung für zwei zusammengesetzte Muttern auf einer Keilwelle (siehe Abb. unten).

⁴⁾ M_{A.2} ist das zulässige statische Moment in Axialrichtung für eine Mutter auf einer Keilwelle (siehe Abb. unten). *Hinweis:* Für eine hohe Genauigkeit sollte der Typ LBF mit zwei zusammengesetzten Muttern eingesetzt werden.

LBR

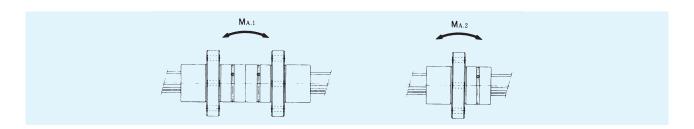
(für mittlere Belastung)




		Abmessungen Mutter ²⁾													
Baugröße¹)	A	Außendurchme	esser 		Länge	Flansch	Н	В	Loch- kreis						
	D	Toleranz	D ₁	L	Toleranz	D ₂			KIGIS						
LBR 15	25	0 -0,013	25,35	40	0	45,4	9	15,5	34						
LBR 20	30		30,35	60	-0,2	56,4	12	24	44						
LBR 25	40	0 -0,016	40,35	70		70,4	14	28	54						
LBR 30	45	-0,010	45,4	80		75,4	16	32	61						
LBR 40	60	0	60,4	100	О	96,4	18	41	78						
LBR 50	75	-0,019	75,4	112	-0,3	112,4	20	46	94						
LBR 60	90		90,5	127		134,5	22	52,5	112						
LBR 70	95	0 -0,022	95,6	135		140,6	24	55,5	117						
LBR 85	120	ŕ	120,6	155	0	170,6	26	64,5	146						
LBR 100	140	0 -0,025	140,6	175	-0,4	198,6	34	70,5	170						

¹⁾ Zur Bestellbezeichnung siehe S. 33.

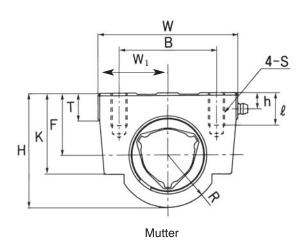
²⁾ Die Muttern der Baugrößen LBR15 bis 70 sind durchweg mit synthetischen Kunststoffkäfigen für geringe Geräuschentwicklung ausgestattet. Bei Betrieb über 80° C sind Metallkäfige einzusetzen (Symbol A in der Bestellbezeichnung). Für die Baugrößen LBR70 oder kleiner sind keine Metallkäfige erhältlich.

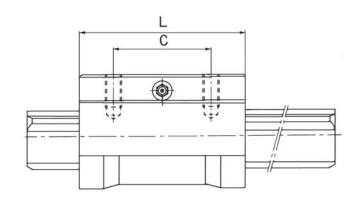


			Torsions	Torsionsbelastung		zahl	Zulässiges stat	isches Moment	Gev	vicht
d ₁	F	Schmier- bohrung d	C _T [Nm]	C _{OT}	C [kN]	C ₀ [kN]	M _{A.1³⁾ [Nm]}	M _{A.2⁴⁾ [Nm]}	Mutter [kg]	Welle [kg/m]
4,5	7,5	2	30,4	74,5	4,4	8,4	185	25,4	0,14	1,0
5,5	12	2	90,2	213	9,4	20,1	632	103	0,33	1,8
5,5	14	2	176	381	14,9	28,7	1060	171	0,54	2,7
6,6	16	3	312	657	22,5	41,4	1740	295	0,90	3,8
9	20,5	3	696	1420	37,1	66,9	3540	586	1,7	6,8
11	23	4	1290	2500	55,1	94,1	5610	941	2,7	10,6
11	26	4	1870	3830	66,2	121	8280	1300	3,7	15,6
14	27	4	3000	6090	90,8	164	11800	2080	6,0	21,3
16	32	5	4740	9550	119	213	17300	3180	8,3	32,0
18	35	5	6460	14400	137	271	25400	4410	14,2	45,0

³⁾ M_{A.1} ist das zulässige statische Moment in Axialrichtung für zwei zusammengesetzte Muttern auf einer Keilwelle (siehe Abb. unten).

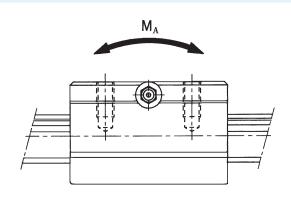
⁴⁾ M_{A.2} ist das zulässige statische Moment in Axialrichtung für eine Mutter auf einer Keilwelle (siehe Abb. unten). *Hinweis:* Für eine hohe Genauigkeit sollte der Typ LBR mit zwei zusammengesetzten Muttern eingesetzt werden.

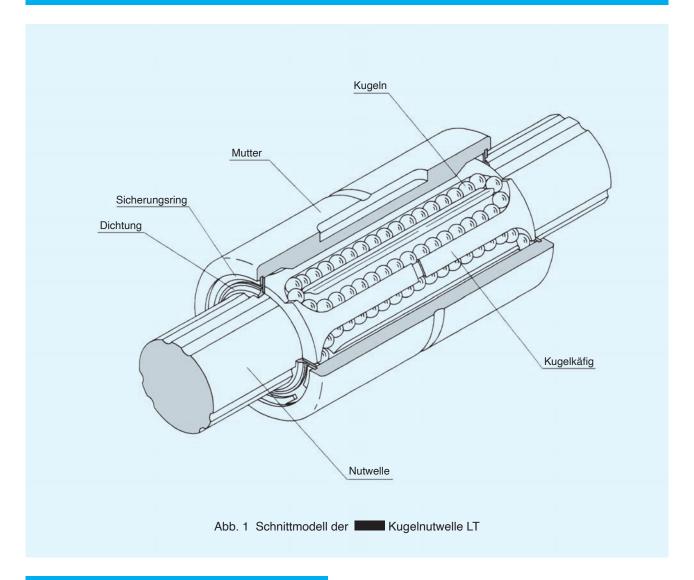

LBH



					Abme	ssungen Mutter ²⁾				
Baugröße ¹⁾	Höhe H	Breite W	Länge L	В	С	S×ℓ	F ±0,15	W ₁ ±0,15	Т	K
LBH 15	29	34	43	26	26	M 4 × 10	15	17	6	20
LBH 20	38	48	62	35	35	M 6 × 12	20	24	7	26
LBH 25	47,5	60	73	40	40	M 8 × 16	25	30	8	33
LBH 30	57	70	83	50	50	M 8 × 16	30	35	10	39
LBH 40	70	86	102	60	60	M10 × 20	38	43	15	50
LBH 50	88	100	115	75	75	M12 × 25	48	50	18	63

¹⁾ Zur Bestellbezeichnung siehe S. 33.


Die Muttern sind mit synthetischen Kunststoffkäfigen für eine geringe Geräuschentwicklung ausgestattet. Käfige für hohe Temperaturen sind nicht verfügbar.


	Abme	ssungen	Torsions	pelastung	Trag	zahl	Zul. statisches Moment	Gewicht		
R	h	Schmier- einrichtung	C _T [Nm]			M _A ³⁾ [Nm]	Mutter [kg]	Welle [kg/m]		
14	5	4 mm Ø Eintreibnippel	30,4	74,5	4,4	8,4	25,4	0,23	1,0	
18	7	A-M6F	90,2	213	9,4	20,1	103	0,58	1,8	
22	6	A-M6F	176	381	14,9	28,7	171	1,10	2,7	
26	8	A-M6F	312	657	22,5	41,4	295	1,73	3,8	
32	10	A-M6F	696	1420	37,1	66,9	586	3,18	6,8	
40	13,5	A-PT1/8	1290	2500	55,1	94,1	941	5,10	10,6	

³⁾ M_A ist das zulässige statische Moment in Axialrichtung für eine Mutter auf der Keilwelle (siehe Abb. unten).

THK Kugelnutwelle LT/LF

Aufbau und Merkmale

Bei den 万元代 Kugelnutwellen LT und LF sind je nach Baugröße zwei oder drei Laufrillenpaare am Umfang der Welle eingeschliffen. In diesen Laufrillenpaaren laufen die Kugelreihen ab, die bei Bedarf mit einer entsprechenden Vorspannung versehen werden können.

Ein Kugelkäfig aus speziellem Kunststoff garantiert einen optimalen Kugelumlauf in der Mutter. Dazu bewahrt er die Kugeln beim Abziehen der Mutter von der Nutwelle vor dem Herausfallen.

Hohe radiale Tragzahlen

Die Laufrillen sind in der Geometrie des Kreisbogens geschliffen, wobei die Schmiegung der Rillen annähernd dem Kugelradius entspricht. Zusammen mit der Winkelanordnung der Kugeln können dadurch hohe radiale Tragzahlen und eine hohe Aufnahme von Torsionsbelastungen realisiert werden.

Winkelspielfrei

Die Winkelanordnung und die Vorspannung der Kugeln gewährleisten Spielfreiheit in Drehrichtung sowie eine hohe Steifigkeit der Kugelnutwelle.

Ausgezeichnete Steifigkeit

Mit dem großen Kontaktwinkel der Kugeln und einer entsprechenden Vorspannung wird eine hohe Steifigkeit der Kugelnutwellen gegenüber Torsionsbelastungen und Momenten erreicht.

Einfache Montage

Der Kugelkäfig ermöglicht ein Abziehen der Mutter von der Welle, ohne dass die Kugeln herausfallen. Somit werden Montage und Wartungsarbeiten vereinfacht.

Hinweis: Die Typen LT4 und LT5 sind wegen ihrer minimalen Baugröße ohne Kugelkäfig.

Typenauswahl

Dieser Typ besteht aus einer zylindrischen Mutter mit einer Passfedernut zur Übertragung von Drehmomenten. Es ist der kompakteste Typ.

Der Flansch ermöglicht eine einfache Montage der Mutter in einem Gehäuse. Diese Einbauart bietet sich bei schmalen Einbaugehäusen an oder wenn eine Verformung des Gehäuses durch die Bearbeitung für eine Passfeder zu befürchten ist. Mit Spannstiften kann der Flansch im Anbauteil fest fixiert werden.

Spiel in Drehrichtung

Das Spiel in Drehrichtung hat einen großen Einfluss auf die Genauigkeit und Steifigkeit der Mutter. Daher muss eine geeignete Vorspannung für die geplante Anwendung ausgesucht werden. Im Allgemeinen werden vorgespannte Kugelnutwellen eingesetzt.

Bei Einsatz mit ruckweisen Drehbewegungen oder hohen Hubfrequenzen wirken Stöße und Vibrationen auf die Mutter. Unter diesen Bedingungen verbessert die Vorspannung die Genauigkeit und letztendlich die Lebensdauer.

Zur Auswahl der optimalen Vorspannung fragen Sie bitte T元光. In Tabelle 2 ist das jeweilige Spiel für LT und LF angegeben.

Tab. 1 Auswahl der Vorspannungsklasse

		Anwendungsbedingungen	Anwendungsbeispiele
sse	СМ	Betrieb mit Vibrationen und Stoßbelastungen.Hohe Steifigkeit erforderlich.Mutter ist Verdrehbelastungen ausgesetzt.	Lenkwellen für Baufahrzeuge, Wellen von Punktschweißmaschinen, Schaltspindeln für Werkzeughalter von Drehmaschinen.
Vorspannungsklasse	CL	 Betrieb mit Überhang- oder Verdrehbelastungen. Hohe Wiederholgenauigkeit erforderlich. Betrieb unter Wechselbelastungen. 	Arme für Industrieroboter, automatische Ladevorrichtungen, Führungswellen für Lackierautomaten, Hauptspindeln für Funkenerosionsmaschinen, Wellen für Führungsgestelle, Hauptspindeln von Bohrmaschinen.
Vors	Normal	 Für gleichmäßigen Betrieb mit geringer Antriebskraft. Betrieb mit stets gleichgerichtetem Drehmoment. 	Messinstrumente, automatische Zeichenmaschinen, Dynanometer, Drahtwickelmaschinen, Schweißautomaten, Verpackungsmaschinen.

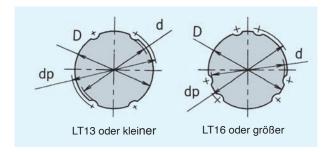
Tab. 2 Spiel der Kugelnutwelle in Drehrichtung

Einheit: µm

Symbol	Normal	leichte Vorspannung	mittlere Vorspannung
Baugröße	kein Symbol	CL	CM
4			
5			
6			
8	0 .4	0 0	
10	- 2∼+1	-6∼-2	
13			
16			0 5
20			-9∼-5
25	-3∼+2	-10∼-4	-14~-8
30	- 3∼+2	-10~-4	-14~-0
40	- 4∼+2	-16∼-8	-22~-14
50	- 4~+∠	-10/~-0	-22/9-14
60	-5∼+2	- 22∼-12	-30∼-20
80	- 0~+2	-22,°-12	-30/~-20
100	-6∼+3	-26∼-14	-36∼-24

Anm.: Bei Normalspiel wird kein Kennzeichen verwendet. Die Kennzeichen für mittlere Vorspannung CM und leichte Vorspannung CL sind bei der Bestellung mit anzugeben.

Das Spiel in Drehrichtung ist auf den Kugelmittenkreis dp bezogen.



Nutwellen

Querschnittsabmessungen

Entsprechend den Kundenanforderungen können Nutwellen mit verschiedenen Wellenenden hergestellt werden. Fügen Sie daher bitte Ihrer Anfrage oder Bestellung eine Skizze zu der gewünschten Ausführung der Nutwelle bei.

Tabelle 3 gibt den Kern- und Außendurchmesser und die Toleranz des Außendurchmessers an.

Tab. 3 Querschnittsabmessung der Nutwellen


Einheit: mm

Baugröße	Kerndurch- messer d	Außendurch- messer D	Außen- durchmesser Toleranz
4	3,5	4	0
5	4,5	5	0 -0,012
6	5,0	6	0,012
8	7,0	8	0
10	8,5	10	-0,015
13	11,5	13	0
16	14,5	16	-0,018
20	18,5	20	0
25	23,0	25	-0,021
30	28,0	30	0,021
40	37,5	40	0
50	46,5	50	-0,025
60	56,5	60	0
80	75,5	80	-0,030
100	95,0	100	0 -0,035

Querschnittsabmessungen von Hohlwellen

Bei Hohlwellen können hydraulische oder pneumatische Leitungen durchgeführt werden. Zur Gewichtsreduzierung einer Gesamtkonstruktion werden auch Hohlwellen eingesetzt.

Tabelle 4 gibt dazu die Querschnittsabmessungen von Standardhohlwellen an.

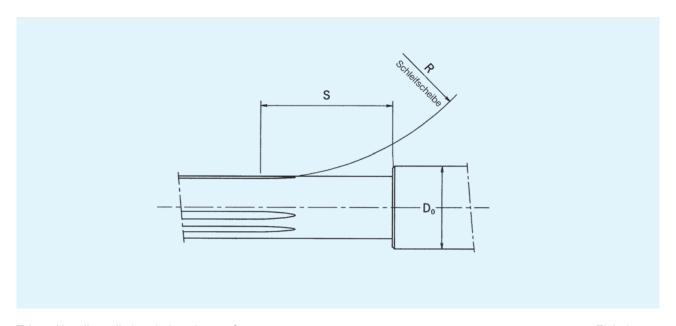
Tab. 4 Bohrungsdurchmesser von hohlen Standard-Nutwellen

Einheit: mm

	Außen-	Тур	κ	Туј	o N
Bau- größe	durch- messer D	Bohrung d ₀	Gewicht [kg/m]	Bohrung d ₀	Gewicht [kg/m]
6	6	2,5	0,20	_	_
8	8	3,0	0,35	_	_
10	10	4,0	0,52	_	_
13	13	5,0	0,95	_	_
16	16	7	1,3	11	0,8
20	20	10	1,8	14	1,3
25	25	12	3,0	18	1,9
30	30	16	4,0	21	2,8
40	40	22	6,9	29	4,7
50	50	25	11,6	36	7,4
60	60	32	16,0	_	_
80	80	52,5	22,6	_	_
100	100	67,5	33,7	_	_

Anm.: Die Typen K und N sind Standard-Nutwellen. Bei Bestellung geben Sie bitte in der Bestellbezeichnung ein K oder N an.

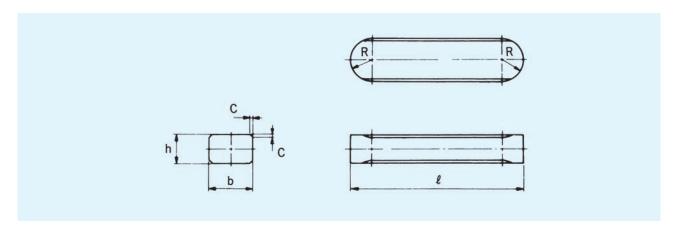
Tab. 5 Kugelmittenkreis dp bei Nutwellen


Baugröße	4	5	6	8	10	13	16	20	25	30	40	50	60	80	100
dp	4,6	5,7	7	9,3	11,5	14,8	17,8	22,1	27,6	33,2	44,2	55,2	66,3	87,9	109,5

Unvollständige Bearbeitung der Laufrillen bei spezialgefertigten Nutwellen

Bei spezialgefertigten Nutwellen mit einem Zapfen am Ende oder in der Mitte der Welle, dessen Durchmesser über dem Kerndurchmesser d liegt, können die Laufrillen aus technischen Gründen nicht vollständig ausgeschliffen werden

Tabelle 6 zeigt die nicht bearbeitete Länge S infolge des größeren Schaftdurchmessers D₀. Die hier angegebenen Längen gelten nicht bei Wellenlängen über 1500 mm. Fragen Sie bitte in diesem Fall 可光.


Tab. 6 Unvollständig bearbeitete Länge S

Schaftdurchmesser D ₀	4	5	6	8	10	13	16	20	25	30	40	50	60	80	100	120	140	160
4	13	20	24	31	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5	_	14	21	28	33	_	_	_	_	_	_	_	_	_	_	_	_	_
6	_	_	16	24	28	33	_	_	_	_	_	_	_	_	_	_	_	_
8		_	1	16	24	30	35	_	1	_	ı	_	ı	ı		ı		_
10		_	1	1	17	27	32	37	1	_	1	_	1	1	_	1		_
13	_	_	_	-	_	17	27	34	40	_	_	_	_	_	_	_	_	_
16	ı	_	ı	I	ı	_	21	36	46	54	ı	_	ı	ı	_	I	1	_
20	ı	_	ı	I	ı	_	_	21	38	48	62	_	ı	ı	_	I	1	_
25	ı	_	ı	ı	ı	_	_	_	23	39	56	67	ı	ı	_	ı	1	_
30	_	_				_	_	_		24	49	62	72		_		_	_
40	_	_	_		_	_	_	_	-	_	27	50	63	81	_	-	_	_
50	ı	_	ı	ı	ı	_	_	_	I	_	I	29	51	74	89	ı	1	_
60	-	_	1	ı	1	_	_	_	1	_	1	_	28	56	71	82	_	_
80	1	_		1		_	_	_		_	1	_	ı	31	57	72	83	_
100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	33	58	73	83

Zubehör

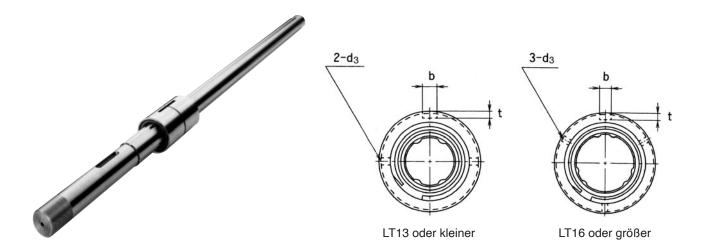
Die Kugelnutwelle Typ LT wird mit einer Standard-Passfeder ausgerüstet (siehe Tabelle 7).

Tab. 7 Standard-Passfedern für LT

Day		Breite		Höhe		Länge	R	С
Baugröße	b	Toleranz p7	h	Toleranz h9	l	Toleranz h12	n	C
LT4	2		2		6	0 -0,120	1	0,3
LT5	2,5		2,5	2,5 0 -0,025	8	0 -0,150	1,25	0,5
LT6 LT8	2,5	+0,016 +0,006	2,5		10,5		1,25	0,5
LT10	3		3		13	0 -0,180	1,5	
LT13	3		3		15		1,5	
LT16	3,5		3,5	0 -0,030	17,5		1,75	
LT20	4		4		29	0 -0,210	2	
LT25	4	+0,024 +0,012	4		36	0	2	
LT30	4		4		42	-0,250	2	
LT40	6		6		52		3	
LT50	8	+0,030 +0,015	7		58	0	4	
LT60	12	+0,036	8	0 -0,036	67	-0,300	6	
LT80	16	+0,018	10		76		8	0,8
LT100	20	+0,043 +0,022	13	0 -0,043	110	0 -0,350	10	

Aufbau der Bestellbezeichnung

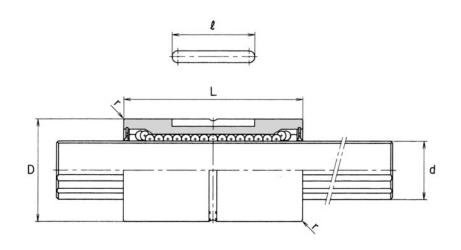
Die Bestellbezeichnung setzt sich wie folgt zusammen:


LT30 UU CL + 500L Symbol für Nutwellenausführung kein Symbol : massive Nutwelle : hohle Standard-Nutwelle (dickwandig) : hohle Standard-Nutwelle (dünnwandig) M : Sondermaterial F : Oberflächenbehandlung (Vernickelung) : zusätzliche Bearbeitung der Welle Ε (Bei mehr als einer Angabe bitte die Symbole in alphabetischer Reihenfolge angeben.) Nutwellen Gesamtlänge (mm) Symbol für Mutternausführung kein Symbol : Standardausführung : Sondermaterial F : Oberflächenbehandlung (Vernickelung) Ε : zusätzl. Bearbeitung der Mutter (Bei mehr als einer Angabe bitte die Symbole in alphabetischer Reihenfolge angeben.) Symbol für Spiel in Drehrichtung (siehe S. 46) kein Symbol : Normalspiel CL : leichte Vorspannung CM : mittlere Vorspannung Symbol für Dichtungen kein Symbol : ohne Dichtungen
UU : beidseitige Gummidichtungen
U : einseitige Gummidichtung Baureihe/-größe Anzahl der Kugelnutmuttern auf einer Welle (bei einer Mutter keine Angabe)

Raum für Notizen	

			Abmessungen Mutter 2)								
Baugröße 1)	Außer	ndurchmesser		Länge	Abmess	ungen Pass	federnut		Schmier-		
	D	Toleranz	L	Toleranz	b H8	t +0,05	ℓ	r	bohrung d ₃		
LT 4 3)	10	0 -0,009	16		2	1,2	6	0,5	_		
LT 5 3)	12	0	20		2,5	1,2	8	0,5	_		
LT 6	14	0 -0,011	25		2,5	1,2	10,5	0,5	1		
LT 8	16	0,011	25	0	2,5	1,2	10,5	0,5	1,5		
LT 10	21	0	33	-0,2	3	1,5	13	0,5	1,5		
LT 13	24	0 -0,013	36		3	1,5	15	0,5	1,5		
LT 16	31	0,010	50		3,5	2	17,5	0,5	2		
LT 20	35	_	63		4	2,5	29	0,5	2		
LT 25	42	0 -0,016	71		4	2,5	36	0,5	3		
LT 30	47	0,010	80	0	4	2,5	42	0,5	3		
LT 40	64	0	100	-0,3	6	3,5	52	0,5	4		
LT 50	80	-0,019	125		8	4	58	1,0	4		
LT 60	90	0	140		12	5	67	1,0	5		
LT 80	120	-0,022	160	0 -0,4	16	6	76	2,0	5		
LT 100	150	0 -0,025	185	0,1	20	7	110	2,5	5		

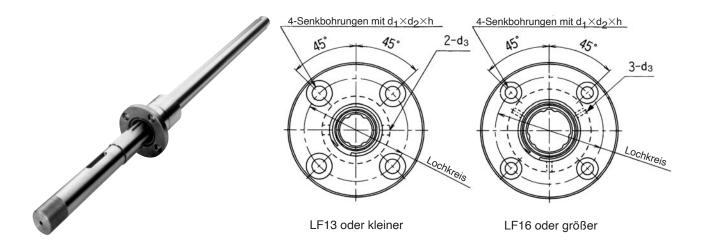
¹⁾ Zur Bestellbezeichnung siehe S. 50.


²⁾ Die Muttern sind für geringe Laufgeräusche mit synthetischen Kunststoffkäfigen ausgestattet. Käfige für den Betrieb bei Temparaturen über 80°C sind nicht erhältlich.

³⁾ Die Baugrößen LT4 und LT5 sind ohne Käfige. Dichtungen werden auf Anfrage geliefert.

⁴⁾ M_{A.1} ist das zulässige statische Moment in Axialrichtung bei zwei auf einer Nutwelle eng zusammengesetzten Muttern (siehe Abb. rechts).

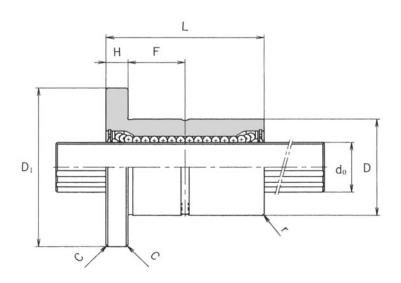
⁵⁾ M_{A.2} ist das zulässige statische Moment in Axialrichtung bei einer Mutter auf der Nutwelle (siehe Abb. rechts). Hinweis: Für eine hohe Genauigkeit sollte der Typ LT mit zwei eng aneinanderliegenden Muttern eingesetzt werden.



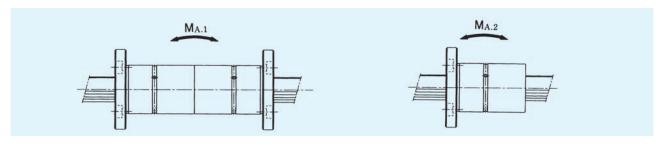
Wellen- ı		Trag	zahl	zul. Torsio	nsmoment	zul. stat.	Moment	Gewicht		
durchmesser d h7	Anzahl der Kugelreihen	C [kN]	C ₀ [kN]	C _T [Nm]	C _{OT} [Nm]	M _{A.1⁴⁾ [Nm]}	M _{A.2⁵⁾ [Nm]}	Mutter [kg]	Welle [kg/m]	
4	4	0,44	0,61	0,59	0,78	6,4	0,88	0,0052	0,10	
5	4	0,66	0,88	0,88	1,37	11,6	1,5	0,0091	0,15	
6	4	1,18	2,16	0,98	1,96	36,3	4,9	0,017	0,23	
8	4	1,47	2,55	1,96	2,94	44,1	5,9	0,018	0,40	
10	4	2,84	4,90	3,92	7,84	98,0	15,7	0,050	0,62	
13	4	3,53	5,78	5,88	10,8	138	19,6	0,055	1,1	
16	6	7,06	12,6	31,4	34,3	393	67,6	0,165	1,6	
20	6	10,2	17,8	56,9	55,9	700	118	0,225	2,5	
25	6	15,2	25,8	105	103	1140	210	0,335	3,9	
30	6	20,5	34,0	171	148	1710	290	0,375	5,6	
40	6	37,8	60,5	419	377	3760	687	1,000	9,9	
50	6	60,9	94,5	842	769	7350	1340	1,950	15,5	
60	6	73,5	111,7	1220	1040	9990	1600	2,500	22,3	
80	6	104,9	154,8	2310	1920	16000	2510	4,680	39,6	
100	6	136,2	195,0	3730	3010	24000	3400	9,550	61,8	

LF

		Abmessungen Mutter ²											
Baugr	Baugröße 1) Außendurchmesser D Toleranz L			Länge Toleranz	Flanschdurchmesser D ₁ Toleranz		н	F	C/r	Schmier- bohrung	Loch- kreis	d ₀ h7	
			TOTOTATIZ	_	TOTOTATIE	Р1	TOTOTATIZ		·	0 / .	d ₃	KIOIO	117
LF	6	14	0	25	0 -0,2	30		5	7,5	0,5	1,5	22	6
LF	8	16	-0,011	25		32		5	7,5	0,5	1,5	24	8
LF	10	21	0	33		42		6	10,5	0,5	1,5	32	10
LF	13	24	0 -0.013	3 36		44		7	11	0,5	1,5	33	13
LF	16	31	0,010	50		51	0	7	18	0,5	2	40	16
LF	20	35	0	63		58	-0,2	9	22,5	0,5	2	45	20
LF	25	42	0 -0,016	71		65		9	26,5	0,5	3	52	25
LF	30	47	0,0.0	80	0	75		10	30	0,5	3	60	30
LF	40	64	0	100	-0,3	100		14	36	1,0/0,5	4	82	40
LF	50	80	-0,019	125		124		16	46,5	1,0	4	102	50


¹⁾ Zur Bestellbezeichnung siehe S. 50.

²⁾ Die Muttern sind für geringe Laufgeräusche mit synthetischen Kunststoffkäfigen ausgestattet. Käfige für den Betrieb bei Temparaturen über 80°C sind nicht erhältlich. Dichtungen werden auf Anfrage geliefert.


³⁾ M_{A.1} ist das zulässige statische Moment in Axialrichtung bei zwei auf einer Nutwelle eng zusammengesetzten Muttern (siehe Abb. rechts).

⁴⁾ M_{A.2} ist das zulässige statische Moment in Axialrichtung bei einer Mutter auf der Nutwelle (siehe Abb. rechts). Hinweis: Für eine hohe Genauigkeit sollte der Typ LF mit zwei eng aneinanderliegenden Muttern eingesetzt werden.

		Tragzahl		zul. Torsio	nsmoment	zul. stat.	Moment	Gewicht	
Anzahl der Ku- gelreihen	Senkbohrungen $d_1 imesd_2 imesh$	C [kN]	C ₀ [kN]	C _T [Nm]	C _{OT} [Nm]	M _{A.1³⁾ [Nm]}	M _{A.2⁴⁾ [Nm]}	Mutter [kg]	Welle [kg/m]
4	$3,4 \times 6,5 \times 3,3$	1,18	2,16	0,98	1,96	36,3	4,9	0,035	0,23
4	$3,4 \times 6,5 \times 3,3$	1,47	2,55	1,96	2,94	44,1	5,9	0,037	0,40
4	4,5×8×4,4	2,84	4,90	3,92	7,84	98	15,7	0,090	0,62
4	4,5×8×4,4	3,53	5,78	5,88	10,8	138	19,6	0,110	1,1
6	4,5×8×4,4	7,06	12,6	31,4	34,3	393	67,6	0,230	1,6
6	$5,5 \times 9,5 \times 5,4$	10,2	17,8	56,9	55,9	700	118	0,330	2,5
6	$5,5 \times 9,5 \times 5,4$	15,2	25,8	105	103	1140	210	0,455	3,9
6	$6,6 \times 11 \times 6,5$	20,5	34,0	171	148	1710	290	0,565	5,6
6	9×14×8,6	37,8	60,5	419	377	3760	687	1,460	9,9
6	11×17,5×11	60,9	94,5	842	769	7350	1340	2,760	15,5

Rotations-Nutwellenführung LTR

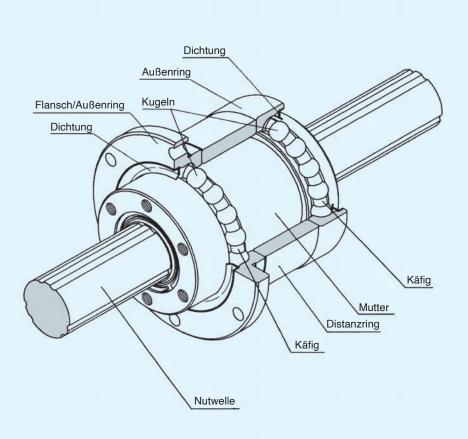


Abb. 1 Schnittmodell der Rotations-Nutwellenführung LTR

Aufbau und technische Merkmale

In die Nutwelle der Rotations-Nutwellenführung LTR sind längsseits drei Laufrillenpaare eingeschliffen, auf denen die sechs Kugelreihen der Mutter laufen. Auf der Außenhülse der Mutter sind Laufrillen für das Stützlager eingeschliffen. Dies ermöglicht eine kompakte und leichte Bauweise. Zum Schutz gegen Fremdpartikel sind die Stützlager standardmäßig mit Spezialdichtungen ausgestattet.

Ein Käfig aus besonderem Kunststoff garantiert einen optimalen und geräuscharmen Umlauf der Kugeln in der Mutter. Dazu bewahrt er die Kugeln beim Abziehen der Mutter von der Welle vor dem Herausfallen.

Kompakt und leicht

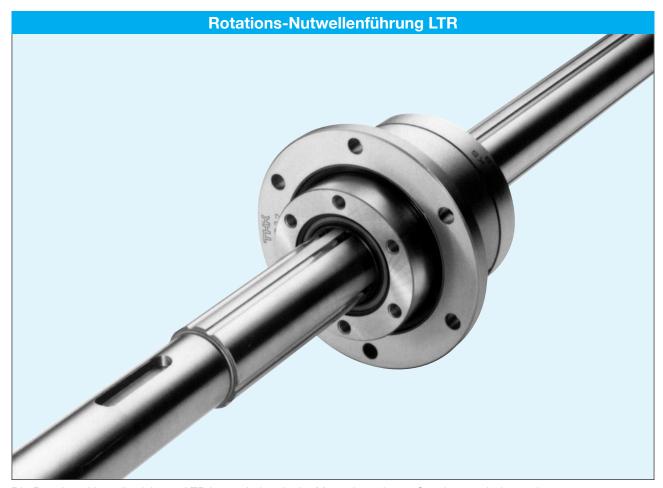
Durch das zur Mutter zugehörige Stützlager ergibt sich ein äußerst präzises und kompaktes Bauelement. Dazu ist durch das geringe Massenträgheitsmoment die Mutter sehr leichtgängig.

Winkelspielfrei

Die einzelnen Paare der Kugelreihen stehen in einem Winkel von 20° zueinander. Dadurch können die Kugeln vorgespannt werden, um das Winkelspiel in Drehrichtung zu beseitigen und die Steifigkeit zu erhöhen.

Anwendungsgebiete

- · Z-Achse von Scara-Robotern
- Wickelmaschinen
- · Werkzeugwechsler von Werkzeugmaschinen
- Montageroboter


Hohe Steifigkeit

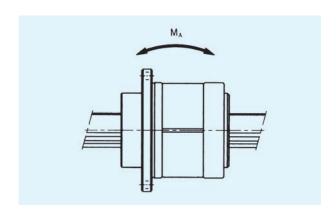
Die Nutwellenführungen sind entsprechend des großen Kontaktwinkels der vorgespannten Kugeln sehr steif gegenüber Torsionsbelastungen und Momenten.

Auch die Stützlager sind mit einem Kontaktwinkel von 30° sehr steif. Dazu können sie hohe Momente aufnehmen.

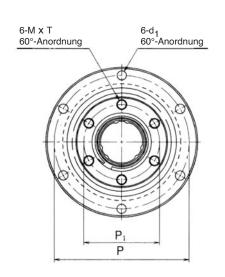
Einfache Montage

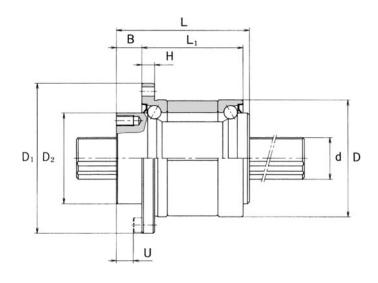
Der Kugelkäfig ermöglicht ein Abziehen der Mutter von der Welle, ohne dass die Kugeln herausfallen. Die Mutter selbst wird einfach am Flansch mittels Schrauben befestigt.

Die Rotations-Nutwellenführung LTR baut mit dem in der Mutter integrierten Stützlager sehr kompakt.

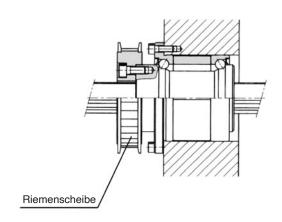


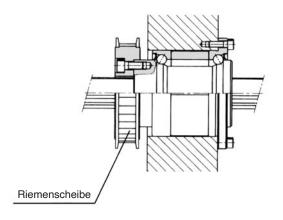
LTR




				Abmes	sungen N	lutwelle	nmutte	r ²⁾			
Baugröße 1)	Außendurchmesser		Länge	Flansch	D _{2h7}	Н	L ₁	В	Р	P ₁	MXT
	D	Toleranz	L	D ₁							
LTR 16	52		50	68	39,5	5	37	10	60	32	M 5 x 8
LTR 20	56	0	63	72	43,5	6	48	12	64	36	M 5 x 8
LTR 25	62	-0,007	71	78	53	6	55	13	70	45	M 6 x 8
LTR 32	80		80	105	65,5	9	60	17	91	55	M 6 x 10
LTR 40	100	0	100	130	79,5	11	74	23	113	68	M 6 x 10
LTR 50	120	-0,008	125	156	99,5	12	97	25	136	85	M10 x 15
LTR 60	134	0 -0,009	140	170	115	12	112	25	150	100	M10 x 15

- ¹⁾ Zur Bestellbezeichnung siehe S. 50.
- ²⁾ Dichtungen werden auf Anfrage geliefert.
- ³⁾ Das Maß U wird vom Kopf einer Befestigungsschraube bis zur Stirnseite der Mutter gemessen.
- ⁴⁾ M_A ist das zulässige statische Moment in Axialrichtung bei einer Mutter auf der Welle (siehe Abb. unten).





Einheit: mm

			Trag	zahl	zul. Torsio	nsmoment	zul. stat. Moment Stützlager Tragzahl			Gewicht		
d ₁	U ³⁾	d ^{h7}	Anzahl der Kugel- reihen	C [kN]	C ₀ [kN]	C _T [Nm]	C _{OT} [Nm]	M _A ⁴⁾ [Nm]	C [kN]	C ₀ [kN]	Mutter [kg]	Welle [kg/m]
4,5	5	16	6	7,06	12,6	31,4	34,3	67,6	12,7	11,8	0,51	1,6
4,5	7	20	6	10,2	17,8	56,9	55,9	118	16,3	15,5	0,7	2,5
4,5	8	25	6	15,2	25,8	105	103	210	17,6	18,0	0,93	3,9
6,6	10	32	6	20,5	34,0	180	157	290	20,1	24,0	1,8	5,6
9	13	40	6	37,8	60,5	419	377	687	37,2	42,5	3,9	9,9
11	13	50	6	60,9	94,5	842	769	1340	41,7	54,1	6,7	15,5
11	13	60	6	73,5	111,7	1220	1040	1600	53,1	68,4	8,8	22,3

LTR32KUU (Flansch und Riemenscheibe entgegengesetzt)

THK-Linearführungen

Laufrollen-Linearführungs-Systeme

Kugelgewindetriebe

Kugelbuchsen

Linearachsen Achssysteme

Indumatik®

Indumatik® Light

Indumatik® Ultralight

Zentrale
Standort Duisburg
Indunorm
Bewegungstechnik GmbH
Obere Kaiserswerther Str. 17
47249 Duisburg
Telefon (0203) 76 91-0
Telefax (0203) 76 91-292
Email: bt@indunorm.eu

Standort Stuttgart

Indunorm
Bewegungstechnik GmbH
Dieselstraße 29
D-71332 Waiblingen
Telefon (07151) 97502-0
Telefax (07151) 97502-20
Email: sued@indunorm.eu

Standort Bockenem

Indunorm
Fertigungstechnik GmbH
Walter-Althoff-Str. 3
D-31167 Bockenem
Telefon (05067) 24693-0
Telefax (05067) 24693-2
Email: ft@indunorm-fertigungstechnik.de

www.indunorm.eu

