

THK Linearführung NR/NRS

Mit der Linearführung NR entwickelte THK eine neue Leistungsdimension. Die idealen dynamischen Eigenschaften dieses kugelgelagerten Linearführungssystems und die Resistenz gegen Schwingungen und Stoßbelastungen sind Basis für den bevorzugten Einsatz in Werkzeugmaschinen. Im Vergleich zu einer rollengelagerten Führung ist die statische Tragzahl höher, obwohl der Typ NR eine kompaktere Bauform aufweist.

Charakteristika der neuen Führungsgeneration NR

Verbesserter Dämpfungseffekt

Wirken keine Bearbeitungskräfte auf die Linearführung, läßt sich der Typ NR sehr leichtgängig verfahren. Hohe Bearbeitungskräfte, wie sie in Werkzeugmaschinen bei der Schwerzerspanung auftreten, erzeugen dagegen eine Vergrößerung der Kontaktflächen zwischen den Kugeln und Kreisbogenrillen (Druckellipse). Die hieraus resultierende Bewegung ist eine ideale Kombination aus gleitendem und rollendem Anteil. Dieser sogenannte Differentialschlupf zwischen den Kugeln und Kreisbogenrillen erzeugt einen belastungsabhängigen Reibwiderstand, der die Dämpfungseigenschaft der Linearführung erheblich verbessert.

Die Erhöhung des Differentialschlupfes beeinträchtigt nicht die Leistungsfähigkeit des Typs NR, wie dies bei Linearführungen mit der Gotikbogen-Konfiguration der Fall ist. Im Eilgang, wenn bei Werkzeugmaschinen hohe Geschwindigkeiten gefordert werden, werden leichtgängige Bewegungen für hohe Positioniergenauigkeiten erzielt.

Bei schwerer Zerspanung mit entsprechend niedrigen Vorschubgeschwindigkeiten werden hervorragende Dämpfungseffekte realisiert, und so die Produktivität von Werkzeugmaschinen durch eine höhere Zerspanleistung und vielfältigere Bearbeitungsmöglichkeiten gesteigert.

Höchste Steifigkeit

Die niedrige und massive Bauweise der Linearführung NR minimiert die Einfederung der Führungsschiene und verhindert das Öffnen des Führungswagens bei Tangentialbelastung. Die Steifigkeit wird deshalb bei Tangentialund Gegenradialbelastung deutlich erhöht. Die als Tiefrillenprofil ausgeführten Kreisbogenrillen ermöglichen eine Selbstorientierung des Kugel-Kontaktwinkels in Belastungsrichtung, um die Steifigkeit und Tragfähigkeit je nach

Belastungsrichtung und Anwendungsbedingung zu optimieren. Die oberen Kreisbogenrillen des Typs NR sind zur Aufnahme von überwiegend radialer Belastung im Kontaktwinkel von 90° zur Auflagefläche geschliffen (siehe Abb. 1).

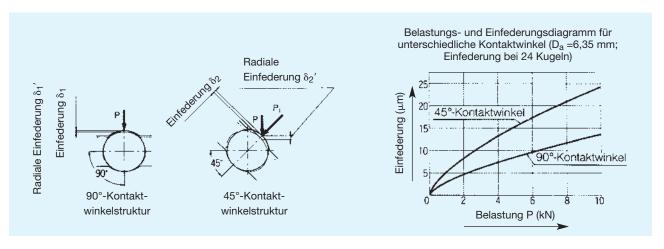
Ist die Belastungsrichtung überwiegend tangential, steht der Typ NRS mit einer Kontaktwinkel-Konfiguration von 45° für gleich hohe Tragfähigkeit in allen Hauptrichtungen zur Verfügung. Die Anschlußmaße und die sonstigen Werte (zulässige statische Momente etc.) sind identisch mit denen des Typs NR. Lediglich die Tragzahlen sind unterschiedlich zum Typ NR.

Ultrahohe Tragfähigkeit

Durch die nahezu identische Form des Tiefrillenprofils mit der Kugelkontur ist beim Typ NR bei Belastung die Kontaktfläche der Kugel gleich oder größer als die Kontaktfläche einer Rolle. Dieses ermöglicht höhere statische Tragzahlen als bei rollengelagerten Linearführungen. In der Praxis werden rollengelagerte Führungen zusätzlich von folgenden Faktoren stark beeinflußt:

- 1. Blockadephänomen durch Rollenverkippung.
- 2. Eine Vorspannung zwecks Steifigkeitserhöhung erzeugt Schwergängigkeit und Fluktuation.
- Kantenpressungen an den Rollen, verursacht durch Montagefehler, reduzieren die tatsächliche Tragfähigkeit.

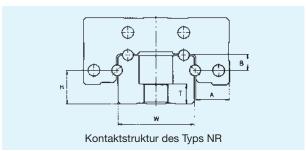
Die neue Führungsgeneration mit den Baureihen NR und NRS ist frei von diesen kritischen Einflüssen und garantiert bei einfacher Montage hohe Maschinenleistungen.



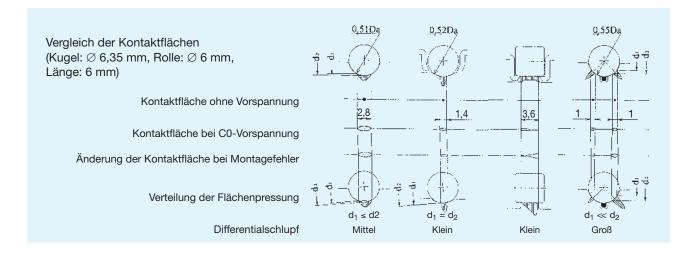
Besonderheiten des Typs NR

Steifigkeitserhöhung um Faktor 2 in Hauptlastrichtung

Der Typ NR basiert auf einem 90°-Kontaktwinkel, der eine höhere Steifigkeit ermöglicht als der 45°-Kontaktwinkel. Übertragen auf die gleiche Radialbelastung P bedeutet dies


eine um 44% geringere Einfederung des Typs NR (siehe Abb. unten).

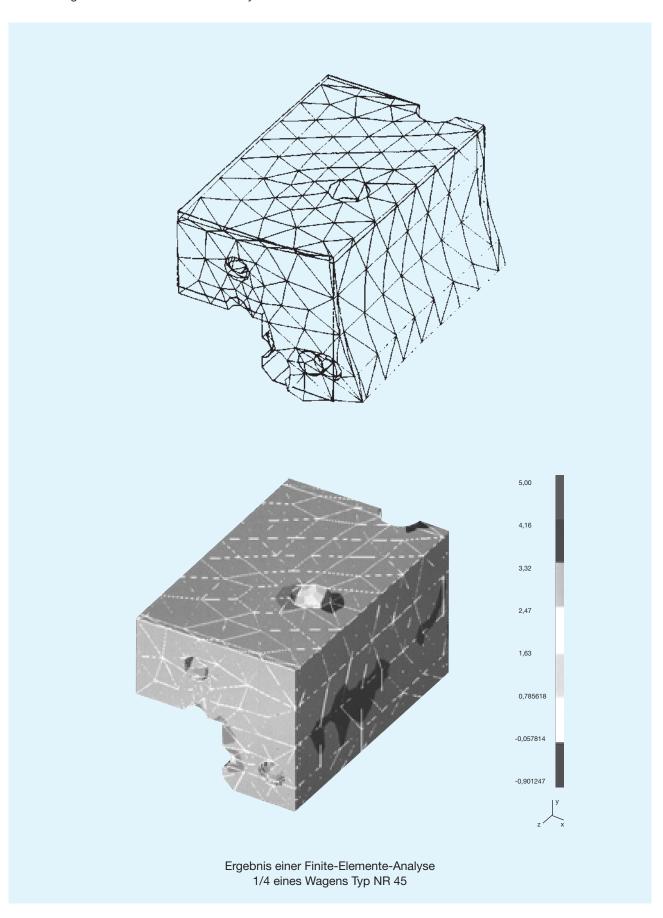
Steifigkeitserhöhung um Faktor 2 bei Tangential- oder Gegenradialbelastung


Beim Typ NR ist die Distanz H von der Schienenauflagefläche zum Kugelzentrum der unteren Kreisbogenrillen kurz. Dies reduziert das Verhältnis der Schienenbreite W zu H. Die Distanz T zwischen der Auflage der Befestigungsschraube zur Schienenauflagefläche ist ebenfalls kurz. Diese konstruktive Überlegung leistet einen Beitrag zur hohen Tangentialsteifigkeit. Die zu erwartende Einfederung des Wagens ist aufgrund der Belastung sowie der Vorspannungs- und Kippkräfte durch kurze Hebelarme (Maß B) minimiert. Versteifte Wangen am Führungswagen (Maß A) verhindern ein Öffnen des Führungswagens bei Gegenradialbelastung.

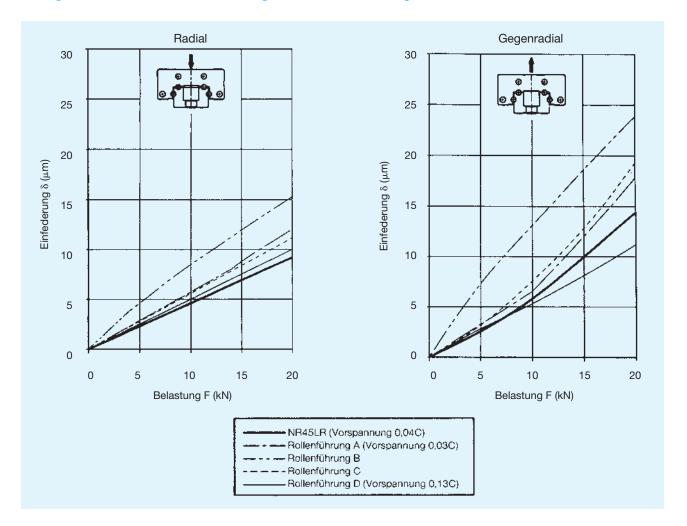
Zur Erhöhung der statischen Steifigkeit werden bei der NR-Serie im Vergleich zum konventionellen kompatiblen Typ 30% mehr Kugeln mit kleinerem Durchmesser verwendet. Durch die nahezu identische Kontur von Laufrillen- und Kugelradius erfolgt eine Selbstorientierung des Kontaktwinkels zur Belastung. Durch diese Charakteristik wird die Steifigkeit in allen Lastrichtungen erhöht.

Vergleich von Kontaktflächen und Flächenpressung je nach Kontaktstruktur

Der Kontaktbereich der Wälzelemente besitzt je nach Konfiguration eine unterschiedliche Verformungsmenge und Flächenpressung. Aufgrund der Bordführung und des modifizierten Linienkontakts verkürzt sich die effektive Kontaktlänge der Rolle. Für die Lastaufnahme steht nicht die volle Traglänge zur Verfügung. Durch die Form- und Lagegenauigkeit sowie Montagetoleranzen wird die Kontaktfläche in der Rolle zusätzlich verringert.



Finite-Elemente-Analyse


Die Entwicklung des Führungswagens der NR-Serie basiert auf dem Ergebnis der Finite-Elemente-Analyse mit der

Zielsetzung, die Steifigkeit zu erhöhen und gleichzeitig die Gesamthöhe zu reduzieren.

Steifigkeitskennlinien: NR45LR im Vergleich zu Rollenführungen

Schnittleistungsergebnisse der Linearführung NR45LR bei einem Bearbeitungsprozeß für Werkzeugmaschinen

Um Erkenntnisse über das tatsächliche Verhalten beim Bearbeiten zu gewinnen, erforscht THK seit einigen Jahren in der Praxis, wie unterschiedlich Führungsarten einschließlich der Gleitführung die Leistung einer Werkzeugmaschine beeinflussen. Basierend auf diesen Testergebnissen wird ein Vergleich zwischen einer THK Linearführung NR45LR und einer Rollenführung dargestellt.

1. Testziel

Die auf einem Lineartisch installierten Kompaktführungen wurden einem Versuch unterzogen, um die Schnittleistung beim Stirnfräsen und Schaftfräsen zu bewerten. Die Leistung beim Schwerzerspanen wurde durch einen Stirnfräser geprüft. Die Kombinationen von Schnittkräften aus unterschiedlichen Richtungen wurden mittels eines Schaftfräsers erfaßt.

2. Testmethode

Der Lineartisch wurde auf der X-Achse eines vertikalen Bearbeitungszentrums installiert. Auf diesem wurde das Werkstück aufgespannt. Der Test wurde bei feststehender X-Achse und bewegtem Lineartisch durchgeführt (Abb. 3).

3. Bewertungsparameter

Die zur Bewertung aufgenommenen Daten wurden wie folgt aufgenommen:

- ① Horizontale Amplitude des Maschinentisches
- 2 Vertikale Amplitude des Maschinentisches
- 3 Verschleißmenge der Wendeschneidplatte
- Leistungsbedarf (Tischvorschub)

Messmethode der Prüfparameter

Um die Schwingungen bei der Bearbeitung zu messen, wurden am Tisch Beschleunigungsaufnehmer installiert. Die Messwerte sind anhand der FFT-Analyse als vertikale und horizontale Amplituden dargestellt.

Als Verschleißmenge ist die Gewichtsdifferenz der Wendeschneidplatte vor und nach dem Bearbeiten bezogen auf das Spanvolumen definiert.

Das benötigte Vorschub-Antriebsmoment des Motors wurde während des Vorschubs gemessen.

Technische Daten zum Prüfstand

Maschine

Vertikales Bearbeitungszentrum Motorleistung: 18,5 kW

Werkzeugaufnahme: BT 50 (entspricht ISO 50)

Tisch

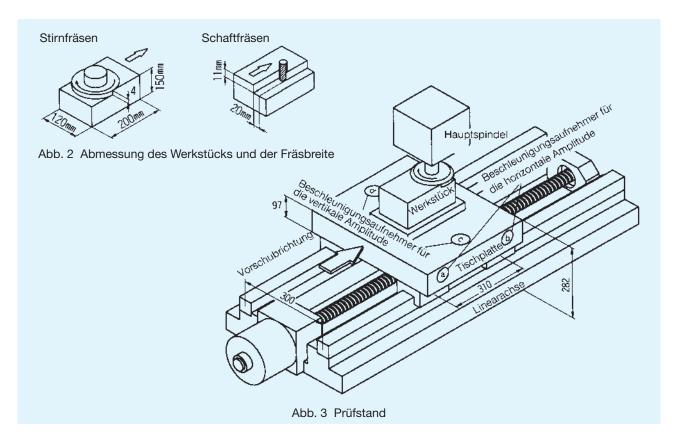
Lineartisch (für Prüfzwecke hergestellt)

AC-Servomotor 2,9 kW Nenndrehmoment: 1862 Ncm

Kugelgewindetrieb: Durchmesser 50 mm

Steigung 10 mm

Werkzeug Werkstück


Stirnfräser: Ø125 mm (6 Schneidplatten, Hartmetall- Maße: 120B × 200L × 150H (mm)

egierung)

Schaftfräser: Ø 20 mm (2 Schneidplatten, Cermett) Werkstoff: S45C (vergleichbar CK45, HRC18)

Bearbeitungsbedingungen

Stirnfräser B 125 Schaftfräser B 20 $n = 382 \text{ min}^{-1}$ $n = 2000 \text{ min}^{-1}$ Drehzahl der Hauptspindel: v = 150 m/minv = 125 m/minSchnittgeschwindigkeit: f = 710 mm/minf = 270 mm/minVorschubgeschwindigkeit: Schnittiefe: t = 4 mmt = 11 mm $Q = 341 \text{ cm}^3/\text{min}$ $Q = 59.4 \text{ cm}^3/\text{min}$ Spanvolumen: Bearbeitungsweg: L = 14,2 mL = 11.6 m

4. Ergebnisse

Vergleich der Bearbeitungsleistung

Die folgende Tabelle verdeutlicht, wie Schwingungen die Bearbeitungsleistung zwischen dem Typ NR und einer

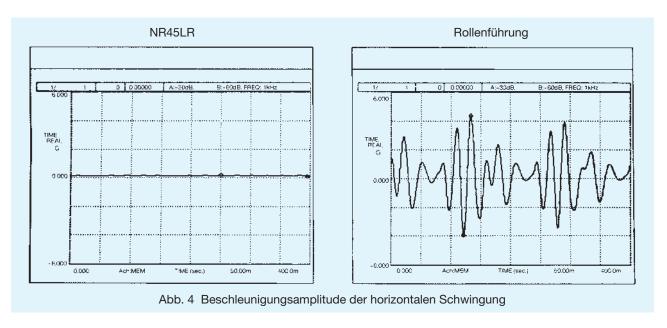
Rollenführung beeinflussen. Ausgangsbasis für die relative Bewertung ist der Wert 1 für den Typ NR.

(siehe Abb. 2)

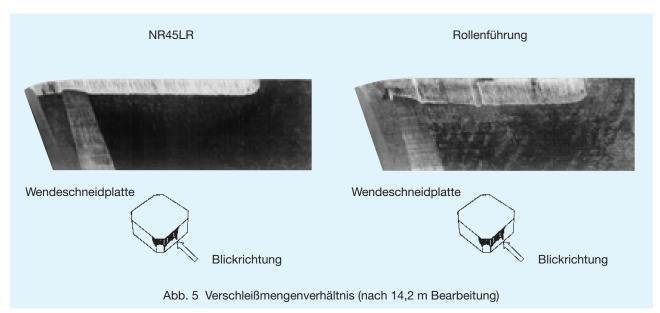
Tab. 1 Stirnfräsen

	① HorizontaleAmplitude	② VertikaleAmplitude	③ Verschleiß- menge	Leistungsbedarf für den Vorschub
NR45LR	1	1 1		1
Rollenführung	1,8	1,3	2,4	1,3

Tab. 2 Schaftfräsen


	① HorizontaleAmplitude	② VertikaleAmplitude	③ Verschleiß- menge	Leistungsbedarf f für den Vorschub
NR45LR	1	1	1	1
Rollenführung	1,2	1,6	3,3	2,1

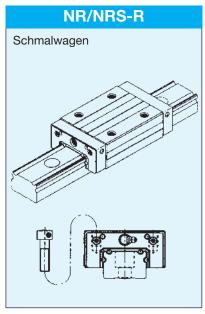
Vergleich der Amplituden am Maschinentisch (Beschleunigungsamplitude)


Die gemessenen Horizontalamplituden der NR45LR während der Bearbeitung werden im Vergleich zu einer Rollenführung dargestellt. Die Beschleunigungsamplituden der

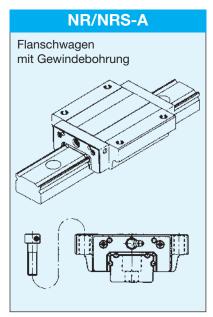
NR45LR sind beim Stirnfräsen kleiner als die der Rollenführung (siehe Abb. 4).

Vergleich über den Verschleiß an der Wendeschneidplatte

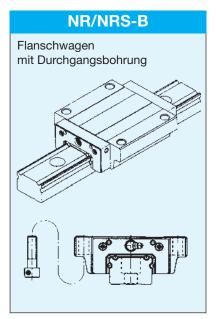
Die beim Stirnfräsen eingesetzte Wendeschneidplatte des Fräskopfes wurde auf Verschleiß untersucht (Abb. 5). Die Aufnahmen zeigen an der Freifläche der Wendeschneidplatte bei der Bearbeitung mit der NR45LR eine kleinere Verschleißbreite als bei dem Test mit einer Rollenführung.


Zusammenfassung der Ergebnisse

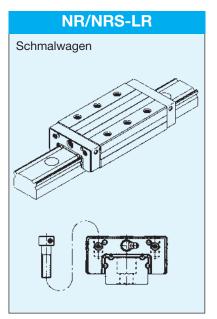
- ① + ② Die Amplitudenwerte beweisen beim Typ NR ein günstigeres dynamisches Verhalten (vertikal wie horizontal). Die Oberflächenqualität (Rauheit, Welligkeit) wird in sehr starkem Maße positiv beeinflußt.
- 3 Das Verschleißmengenverhältnis der Wendeschneidplatte ist beim Typ NR um Faktor 2 bis 3 verbessert.
- Der für den Tischvorschub erforderliche Leistungsbedarf beträgt beim Typ NR im Vergleich zu einer Rollenführung lediglich 75 %. Die Wirtschaftlichkeit des Maschineneinsatzes wird dadurch erhöht.



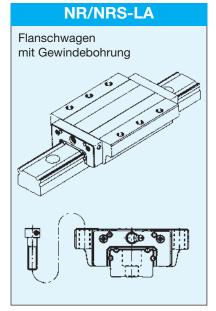
Typenauswahl und Merkmale


Typen für hohe Belastung

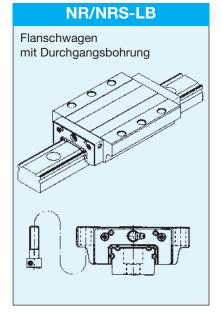
Gewinde sind im Wagen eingebracht. Einsatz bei begrenztem Bauraum.



Gewindebohrungen befinden sich im Flansch. Einfache Befestigung von oben.

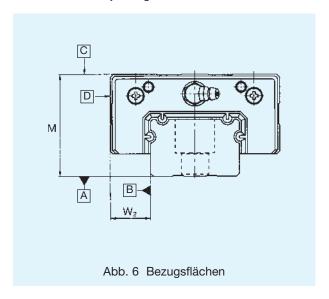


Befestigung über Durchgangsbohrungen von unten.


Typen für extrem hohe Belastung

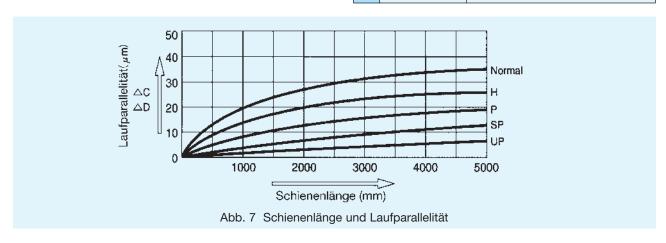
Langwagen (mehr Kugeln) bei gleichem Querschnitt wie NR/NRS-R.

Langwagen (mehr Kugeln) bei gleichem Querschnitt wie NR/NRS-A.



Langwagen (mehr Kugeln) bei gleichem Querschnitt wie NR/NRS-B.

Genauigkeitsklassen


Die Typen NR und NRS können in fünf verschiedenen Genauigkeitsklassen geliefert werden. Tabelle 3 gibt Auskunft über die jeweilige Toleranz.

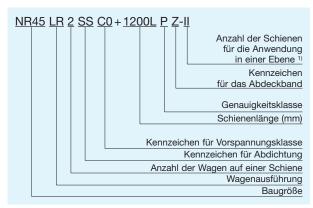
Tab. 3 Genauigkeitsklassen

Einheit: mm

iao.	o deridaigkeitsr					oit. IIIIII			
Bau- größe	Genauigkeitsklasse	Normal	Hoch- genaue Klasse	Präzisions Klasse		Ultra- präzisions Klasse			
	Kennzeichen	Normal	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01			
NR	Abweichung der Höhe M zwischen den Paaren	0,02	0,015	0,007	0,005	0,003			
NRS 25X	Maßtoleranz der Breite W ₂	±0,1	±0,04	0 -0,04	0 -0,02	0 -0,01			
30 35	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,015	0,007	0,005	0,003			
	Laufparallelität der Bezugsfläche © zur Fläche A		ΔС	(nach Ab	b. 7)				
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 7)				
	Kennzeichen	Normal	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02			
	Abweichung der Höhe M zwischen den Paaren	0,03	0,015	0,007	0,005	0,003			
NR NRS	Maßtoleranz der Breite W ₂	±0,1	±0,05	0 -0,05	0 -0,03	0 -0,02			
45 55	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,02	0,01	0,007	0,005			
	Laufparallelität der Bezugsfläche © zur Fläche A	Δ C (nach Abb. 7)							
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 7)				
	Kennzeichen	Normal	Н	Р	SP	UP			
	Maßtoleranz der Höhe M	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03			
NR	Abweichung der Höhe M zwischen den Paaren	0,03	0,02	0,01	0,007	0,005			
NRS 65	Maßtoleranz der Breite W ₂	±0,1	±0,07	0 -0,07	0 -0,05	0 -0,03			
75 85 100	Abweichung der Breite W ₂ zwischen den Paaren	0,03	0,025	0,015	0,010	0,007			
100	Laufparallelität der Bezugsfläche © zur Fläche A		ΔС	(nach Ab	b. 7)				
	Laufparallelität der Bezugsfläche D zur Fläche B		ΔD	(nach Ab	b. 7)				

Vorspannungsklassen

In Tabelle 4 sind die Vorspannungsklassen mit dem entsprechenden Radialspiel aufgeführt. Bei vorgespannten Führungssystemen ist das Radialspiel negativ.

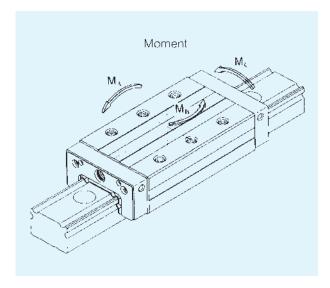

Tab. 4 Vorspannungsklassen

Einheit: μm

	Vor	rspannungskla	sse		
Baugröße	Normal	Leicht	Mittel		
	_	C1	C0		
NR/NRS25X	0 ~ -3	- 3 ∼ - 6	-6 ∼ -9		
NR/NRS30	0 ~ -4	- 4 ∼ - 8	-8 ~ -12		
NR/NRS35	0 ~ -4	- 4 ∼ - 8	-8 ~ -12		
NR/NRS45	0 ~ -5	- 5 ∼ - 10	-10 ~ -15		
NR/NRS55	0 ∼ -6	- 6 ∼ - 11	-11 ∼ -16		
NR/NRS65	0 ∼ -8	-8 ~ -14	-14 ~ -20		
NR/NRS75	0 ~ -10	-10 ~ -17	-17 ~ -24		
NR/NRS85	0 ~ -13	-13 ∼ -20	-20 ~ -27		
NR/NRS100	0 ~ -14	-14 ∼ -24	-24 ~ -34		

Anm.: Die Vorspannungsklasse "Normal" wird nicht bezeichnet. Wird die Vorspannungsklasse "Leicht" bzw. "Mittel" gewünscht, muß das entsprechende Symbol in der Bestellbezeichnung angegeben werden (siehe Aufbau der Bestellbezeichnung).

Aufbau der Bestellbezeichnung


Das Zeichen "II" ist keine Stückzahlangabe, sondern legt den Paralleleinsatz fest. Für diese Montagevariante sind zwei Schienen erforderlich.

Zulässiges statisches Moment M₀

Beim Einsatz eines Führungswagens oder zweier Wagen, die direkt aneinander auf einer Führungsschiene montiert sind, wirkt je nach Lage des Kraftangriffspunktes eine zusätzliche Momentbelastung auf den bzw. die Führungswagen.

Tabellen 5a und 5b geben Auskunft über das zulässige statische Moment.

Tab. 5a Zulässiges statisches Moment beim Typ NR

Einheit: kNm

71.										
Momente	M	l _A	N	l _B	M _C 1)					
Baugröße	1 Wagen	2 Wagen	1 Wagen	2 Wagen						
NR25X	0,771	3,86	0,469	2,33	0,91					
NR25XL	1,26	6,29	0,775	3,82	1,21					
NR30	1,26	6,63	0,778	4,05	1,47					
NR30L	2,18	10,6	1,33	6,47	1,95					
NR35	1,75	9,47	1,08	5,8	2,24					
NR35L	3,14	15,5	1,92	9,43	3,03					
NR45	3,37	17,7	2,07	10,8	4,45					
NR45L	5,93	28	3,59	16,9	5,82					
NR55	5,39	27,8	3,3	16,9	6,98					
NR55L	8,87	43,8	5,41	26,6	9,05					
NR65	8,76	44,7	5,39	27,3	11,6					
NR65L	16,8	79,9	10,1	48	15,9					
NR75	14,4	73,3	8,91	44,7	19,3					
NR75L	25,4	118	15,4	71,4	25,2					
NR85	20,3	102	12,4	62,6	26,8					
NR85L	34,7	160	21	96,2	34,6					
NR100	34	167	20,7	101	43,4					
NR100L	47,3	238	29,2	146	54,6					

Der M_C-Wert gilt für einen Wagen. Bei einer Anwendung mit zwei Wagen verdoppelt sich der Wert.

Tab. 5b Zulässiges statisches Moment beim Typ NRS Einheit: kNm

Momente	M	l _A	M	l _B	M _C 1)					
Baugröße	1 Wagen	2 Wagen	1 Wagen	2 Wagen						
NRS25X	0,568	2,84	0,568	2,84	0,633					
NRS25XL	0,926	4,6	0,926	4,6	0,846					
NRS30	0,926	4,86	0,926	4,86	1,02					
NRS30L	1,6	7,83	1,6	7,83	1,36					
NRS35	1,28	6,92	1,28	6,92	1,54					
NRS35L	2,29	11,3	2,29	11,3	2,09					
NRS45	2,47	13	2,47	13	3,09					
NRS45L	4,34	20,5	4,34	20,5	4,06					
NRS55	3,97	20,5	3,97	20,5	4,86					
NRS55L	6,49	32	6,49	32	6,28					
NRS65	6,45	32,9	6,45	32,9	8,11					
NRS65L	12,3	58,6	12,3	58,6	11,1					
NRS75	10,6	53,8	10,6	53,8	13,4					
NRS75L	18,6	87	18,6	87	17,6					
NRS85	14,9	75,3	14,9	75,3	18,7					
NR85L	25,4	117	25,4	117	24,2					
NR100	25,1	123	25,1	123	30,4					
NR100L	34,6	174	34,6	174	38,1					

Berechnung der Lebensdauer

Die Lebensdauer der Linearführung SNR/SNS wird nach folgender Formel bestimmt:1)

$$L = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_C}\right)^3 \times 50$$

L : Nominelle Lebensdauer (km) Die nominelle Lebensdauer L ist statistisch als die Gesamtlaufstrecke definiert, die 90% einer größeren Menge gleicher Führungen unter gleichen Betriebsbedingungen erreichen oder überschreiten, bevor erste Anzeichen einer Werkstoffermüdung auftreten.

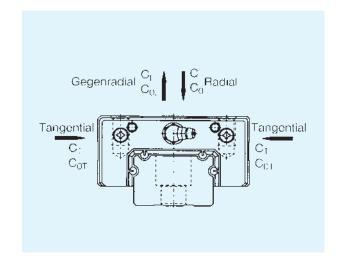
C: Dynamische Tragzahl (N)
PC: Berechnete Belastung (N)

 f_T : Temperaturfaktor f_C : Kontaktfaktor f_W : Belastungsfaktor

Aus der errechneten nominellen Lebensdauer L kann die Lebensdauer L_h (in Stunden) nach folgender Formel errechnet werden:

$$L_h = \frac{L \times 10^3}{2 \times \ell_S \times n_1 \! \times \! 60}$$

L_h: Zeitbezogene Lebensdauer (h)


 ℓ_{S} : Hublänge (m)

n₁: Anzahl der Zyklen pro Minute (min⁻¹)

Variation der Tragzahlen

Tragzahlen

Linearführungen des Typs NR und NRS können Belastungen aus allen Richtungen aufnehmen. Die in den Maßtabellen weiter hinten angegebenen Tragzahlen beziehen sich bei der Baureihe NRS auf Belastungen aus allen Hauptrichtungen (radial, gegenradial, tangential). Beim Typ NR sind die Tragzahlen getrennt für die einzelnen Hauptrichtungen angegeben.

Tab. 6 Verhältnis der Tragzahlen beim Typ NR

Belastungs- richtungen	Dynamische Tragzahl	Statische Tragzahl		
Radial	С	C ₀		
Gegenradial	C _L =0,78C	C _{0L} =0,71C ₀		
Tangential	C _T =0,48C	C _{0T} =0,45C ₀		

Aquivalente Belastung

Für den Typ NRS errechnet sich die äquivalente Belastung wie folgt:

$$P_{\mathsf{E}} = |P_{\mathsf{R}} - P_{\mathsf{L}}| + P_{\mathsf{T}}$$

Bei gleichzeitiger Gegenradial- und Tangentialbelastung wird die äquivalente Belastung beim Typ NR wie folgt berechnet:

$$P_E = X \times P_L + Y \times P_T$$

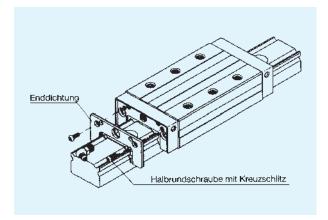
P_E : Äquivalente Belastung (gegenradial oder tangential) (N)

 P_L : Gegenradialbelastung (N) P_T : Tangentialbelastung (N) X, Y : Äquivalenzfaktor (siehe Tabelle 7)

Tab. 7 Äquivalenzfaktor

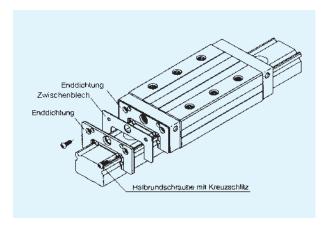
	P _E	Х	Υ
P _L /P _T ≥1	Äquivalente Gegenradialbelastung	1	2
P _L /P _T <1	Äquivalente Tangentialbelastung	0,5	1

 $^{^{1)}}$ Ausführliche Informationen, insbesondere zu den Faktoren f_T , f_C und f_W , finden Sie im Kapitel zur Lebensdauerberechnung.

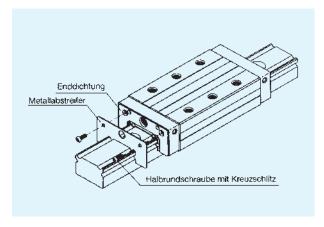


Abdichtung

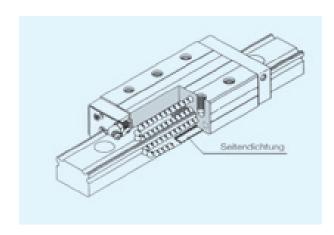
Je nach Bedarf stehen zum Abdichten folgende Dichtungsarten für den Typ NR zur Verfügung. Bitte beachten Sie die Tabelle zu den Kombinationsmöglichkeiten weiter unten.


Enddichtung

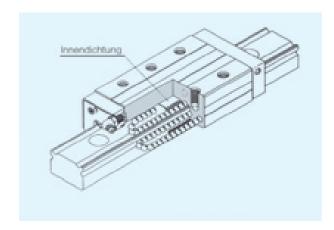
Standardmäßig vorgesehen.


Doppeldichtung

Zum verstärkten Staubschutz ist die Doppeldichtung als Zubehör erhältlich.


Metallabstreifer

Der Metallabstreifer schützt gegen heiße Späne und andere Fremdpartikel.


Seitendichtung

Für eine verbesserte Abdichtung der Wagenunterseite.

Innendichtung

Zur effektiven Innenabdichtung.

Schmiersystem QZ

Siehe S. 354.

Lamellen-Kontaktabstreifer LaCS

Siehe S. 364.

Kennzeichnung für Abdichtung

In der Bestellbezeichnung ist die Angabe der gewünschten Abdichtung mit dem entsprechenden Kennzeichen vorzunehmen.

Die Gesamtlänge des Führungswagens kann je nach Abdichtungsart variieren. Siehe dazu Tabelle 8 mit der Angabe der entsprechenden Länge L des Führungswagens.

Tab. 8

S	ymbol	Abdichtungszubehör
	UU	Mit beidseitigen Enddichtungen
	SS	Mit End-, Seiten- und Innendichtungen
	ZZ	Mit End-, Seiten- und Innendichtungen sowie Metallabstreifern
	DD	Mit Doppel-, Seiten- und Innendichtungen
	KK	Mit Doppel-, Seiten- und Innendichtungen sowie Metallabstreifern

Tab. 9 Kombinationsmöglichkeiten bei Abdichtungen mit entstehender Längenvariation des Führungswagens

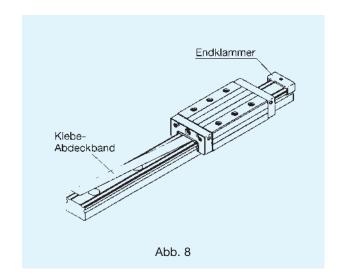
Einheit: mm

Baugröße	oh	ohne UU		IU	SS		DD		ZZ		KK	
NR/NRS25X	0	-1,2	0	_	0	-	0	7,4	0	6,2	0	13,8
NR/NRS30	0	-0,9	0	_	0	-	0	9,0	0	6,4	0	15,4
NR/NRS35	0	-1,0	0	_	0	_	0	10,2	0	7,6	0	17,8
NR/NRS45	0	-1,0	0	_	0	-	0	10,2	0	8,4	0	18,6
NR/NRS55	0	-2,4	0	_	0	-	0	10,0	0	8,4	0	18,6
NR/NRS65	0	-2,6	0	-	0	-	0	10,6	0	8,2	0	18,8
NR/NRS75	0	-3,4	0	_	0	-	0	11,0	0	8,6	0	19,6
NR/NRS85	0	-1,1	0	_	0	-	0	15,9	0	11,7	0	25,3
NR/NRS100	0	-6,6	0	_	0	-	0	17,2	0	10,4	0	27,6

o: Kombinationsmöglichkeit vorhanden

Dichtungswiderstand

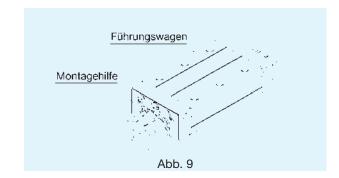
In Tabelle 10 ist der maximale Dichtungswiderstand eines abgeschmierten Führungswagens mit montierten Enddichtungen angegeben.

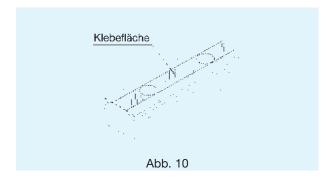

Tab.10 Dichtungswiderstand Einheit: N

Baugröße	Dichtungswiderstand
NR/NRS25X	15
NR/NRS30	17
NR/NRS35	23
NR/NRS45	24
NR/NRS55	29
NR/NRS65	42
NR/NRS75	42
NR/NRS85	42
NR/NRS100	51

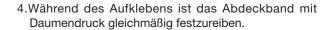
Klebe-Abdeckband SP

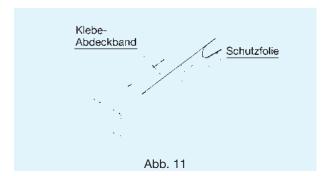
Das Klebe-Abdeckband aus dünnem Stahlblech (1.4301) verhindert besonders effektiv das Eindringen von Spänen, Staub, Kühlflüssigkeit und anderen Fremdpartikeln über die Befestigungsbohrungen der Führungsschiene in den Führungswagen.


Das Klebe-Abdeckband wird gleichzeitig mit der Endklammer des Typs EP an beiden Schienenenden fixiert.

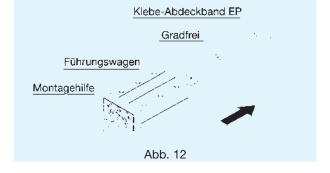


Befestigung des Klebeabdeckbandes


1. Zuerst müssen die Führungswagen von der Schiene auf entsprechende Montagehilfen gezogen werden.



2. Anschließend sind die Schienenoberflächen sorgfältig zu reinigen. Zum Entfernen von Öl und Fett empfiehlt sich als Lösungsmittel z.B. Industriealkohol.

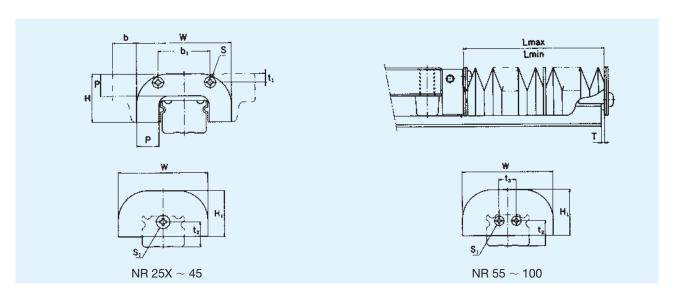


3. Danach wird die Schutzfolie nach und nach entfernt und das Abdeckband ohne zu knicken aufgeklebt.

5. Danach können die Führungswagen wieder auf die Führungsschiene aufgezogen werden.

6. Das Klebeabdeckband wird weiterhin durch die Endklammern an den Schienenenden dauerhaft fixiert. Die Endklammern selbst werden über die oben sitzenden Madenschrauben befestigt. Die seitlichen Gewindebohrungen dienen zur Befestigung von Faltenbälgen.

- Wichtig: 1. Die Madenschrauben zur Befestigung der Endklammern dürfen nicht übermäßig stark angezogen werden.
 - 2. Beim Arbeiten mit dem Klebeabdeckband, das aus sehr dünnem Stahlblech besteht, sind wegen der Verletzungsgefahr Arbeitsschutzmittel wie Handschuhe zu tragen.

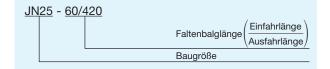


Faltenbalg

Für die Linearführungen NR und NRS ist als Option ein einfacher Faltenbalg lieferbar. Der Faltenbalg empfiehlt sich besonders bei kritischen Umgebungsbedingungen (z.B. Spritzwassereinwirkung).

Metall-Teleskopabdeckung

Für einen effektiven Staubschutz empfehlen wir eine Metall-Teleskopabdeckung wie in Abb. 14.

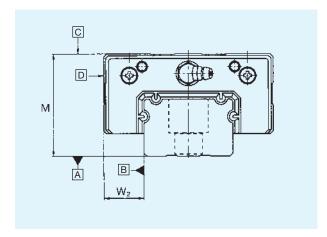


Tab. 11 Faltenbalgabmessungen

Einheit: mm

Γ								Ab	messu	ngen					
	Baugröße	W	Н	H ₁	Р	b ₁	t ₁	t ₂	t ₃	Befestigungsschraube am Wagen Schraubengröße S × Gewindelänge	Befestigungsschraube an Schiene Schraubengröße S ₁ × Gewindelänge	b A/B	Т	A Lmax Lmin	passende Führung
	JN25	48	25,5	25,5	10	26,6	4,6	13	_	M3 × 5	$M4 \times 4$	11	1,5	7	NR/NRS25X
	JN30	60	31	31	14	34	5,5	17	_	M4 × 8	$M4 \times 4$	15	1,5	9	NR/NRS30
	JN35	70	35	35	15	36	6	20,5	l	M4 × 8	M5 × 4	15	2	10	NR/NRS35
	JN45	86	40,5	40,5	17	47	6,5	24		M5 × 10	M5 × 4	17	2	10	NR/NRS45
	JN55	100	49	49	20	54	10	29,5	18	M5 × 10	M5 × 4	20	2	13	NR/NRS55
	JN65	126	57,5	57,5	20	64	13,5	36,2	20	M6 × 12	M6 × 5	22	3,2	13	NR/NRS65
	JN75	145	64	64	30	80	10,5	34,2	26	M6 × 12	M6 × 5	25	3,2	20	NR/NRS75
	JN85	156	70,5	70,5	30	110	15,5	39,5	28	M6 × 12	M6 × 5	39,5	3,2	20	NR/NRS85
	JN100	200	82	82	30	140	15	40	34	M8 × 16	M6 × 5	30	3,2	20	NR/NRS100

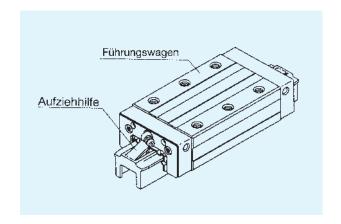
Aufbau der Bestellbezeichnung



Montagehinweis

Anschlaghöhen und Ausrundungsradien

Für die Montageflächen der Führungswagen und Schienen werden die in Tabelle 12 angegebenen Anschlaghöhen empfohlen. Die Ausrundungen an den Montageflächen sollten so gefertigt sein, daß Berührungen mit den angefasten Flächen des Wagens bzw. der Schiene vermieden werden. Wir empfehlen die Ausrundungen entsprechend der in Tabelle 12 angegebenen Maximalradien auszuführen.



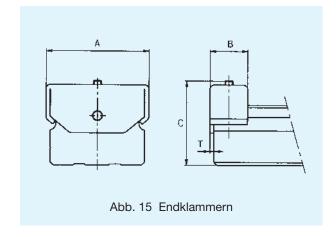
Tab. 12 Anschlaghöhe und Ausrundungsradius Einheit: mm

Baugröße	Ausrundungs- radius r (max.)	Anschlaghöhe für Schiene H ₁	Ŭ	Е
NR/NRS25X	0,5	5	5	5,5
NR/NRS30	1,0	5	5	7
NR/NRS35	1,0	6	6	9
NR/NRS45	1,0	8	8	11,5
NR/NRS55	1,5	10	10	14
NR/NRS65	1,5	10	10	15
NR/NRS75	1,5	12	12	15
NR/NRS85	1,5	14	14	17
NR/NRS100	2,0	16	16	20

Aufziehhilfe

Wenn die Führungswagen der Typen NR und NRS von der Schiene gezogen werden, fallen die Kugeln heraus. Um dies zu vermeiden, sollte eine spezielle Aufziehhilfe benutzt werden.

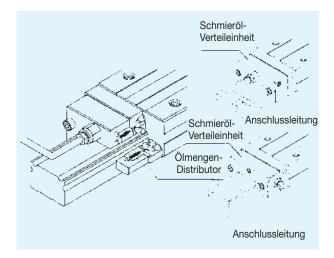
Endklammern

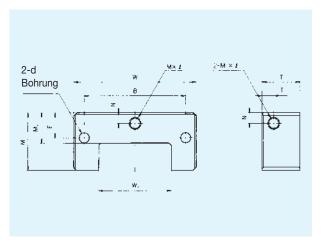

Um ein versehentliches Abziehen des Führungswagens zu vermeiden, werden die Führungsschienen mit Endklammern geliefert.

Werden die Endklammern im Betrieb nicht mehr benötigt, ist zu beachten, daß der Führungswagen nicht über die Schiene hinausfährt.

Die Endklammern werden außerdem als Befestigungselemente für Abdeckbänder benutzt.

Tab. 13 Abmessungen der Endklammern Einheit: mm


Baugröße	А	В	С	Т
NR/NRS25X	26	14	25	1,5
NR/NRS30	31	14	31	1,5
NR/NRS35	38	16	32,5	2
NR/NRS45	49	18	41	2
NR/NRS55	57	20	46,5	2
NR/NRS65	69,4	22	59	3,2
NR/NRS75	81,7	28	56	3,2
NR/NRS85	91,4	22	68	3,2
NR/NRS100	106,4	25	73	3,2



Schmieröl-Verteileinheit

Für die Baureihe NR ist auch eine Schmieröl-Verteileinheit erhältlich. Dieses spezielle Schmieradapter ermöglicht eine gleichmäßige Verteilung des Schmieröls auf die vier Kugelumläufe unabhängig von der Einbaulage der Führung.

Einbaulage und Schmierung

T규터 Linearführungen können in acht Einbaulagen, wie in Kapitel 8.5 dargestellt, montiert werden. Bei Bestellung eines Führungssystems sollte die Einbaulage angegeben werden, damit bei einer geplanten Ölschmierung die richtigen Schmierkanäle vorgesehen werden können.

Merkmale

In der Schmieröl-Verteileinheit sind Ölmengen-Distributoren integriert, die direkt die vier Kugelumläufe mit Schmieröl versorgen. Dabei können die Anschlussleitungen über M8-Gewindebohrungen an der Stirnseite oder an den Seitenflächen der Verteileinheit angebracht werden.

Aufgrund der Schmierkanäle innerhalb der Verteileinheit werden die Kugelreihen gleichmäßig mit einer bestimmten Ölmenge geschmiert, so daß eine übermäßige Schmierung und damit ein zu hoher Ölverbrauch vermieden wird. Dies ist auch unabhängig von der Einbaulage.

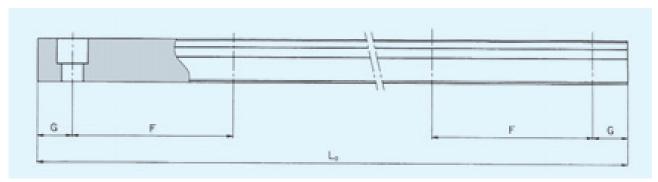
Bei Werkzeugmaschinen können die Schmieröl-Verteileinheiten zur Versorgung mit Öl-Mengen-Impulsen an die Zentralschmieranlage angeschlossen werden.

Spezifikation

Viskosität des Schmieröls	ISO-VG 32 ~ ISO-VG 64
Ölmenge	0,03 x 4, 0,06 x 4 cm ³ /Impuls
Anschlussleitung	Ø 4, Ø 6
Material	Aluminiumlegierung

Einheit: mm

Тур	Breite W	Höhe M		W ₁	M ₁	В	Е	Ν	T ₁	d	Ölimpuls- Menge [cm³]
A30N	56	29	25	29	14,5	46	14	5,3	5,3	3,5	
A35N	66	33	25	35	17	54	16,5	6	5,3	4,5	0,03 x 4
A45N	81	38	25	48	20	67	16,5	7	7,8	6,6	
A55N	94	45,5	25	56	22	76	20,5	7	7,8	6,6	
A65N	119	55,5	25	67	26,3	92	25,5	11,5	7,8	9	0,06 x 4
A85N	147	68,5	25	92	34	114	32	15,5	7,8	9	


Anm.: Die Maße für die Gewindebohrungen M x ℓ und M1 x ℓ_1 sind M8 x 8.

Standard- und Maximallängen der Führungsschienen

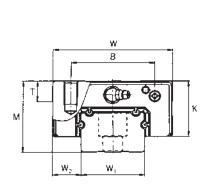
Die Standard- und Maximallängen der Führungsschienen sind in der Tabelle 14 angegeben. Längen, die die in der Tabelle angeführten Maximallängen überschreiten, werden als gestoßene Schienen geliefert. Bei der Bestellung von Überlängen wird der Wert G (Stoßstelle) nach Tabelle 14

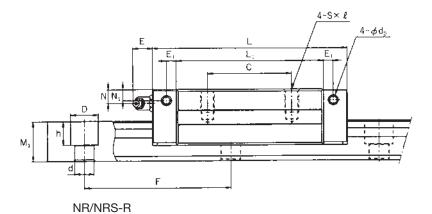
empfohlen. Ist das Maß G größer als der angegebene Wert, neigen die Schienenenden nach der Montage zur Instabilitat und die Genauigkeit kann beeinträchtigt werden. Gestoßene Schienen werden so gefertigt, daß kein Versatz an den Stoßstellen entsteht.

Tab. 14 Standard- und Maximallängen der Führungsschienen

Einheit: mm

Baugröße	NR25X NRS25X	NR30 NRS30	NR35 NRS35	NR45 NRS45	NR55 NRS55	NR65 NRS65	NR75 NRS75	NR85 NRS85	NR100 NRS100
Standardlänge der Führungsschiene (L ₀)	230 270 350 390 470 510 590 630 710 750 830 950 990 1070 1110 1190 1230 1310 1350 1430 1470 1550 1590 1710 1830 1950 2070 2190 2310 2430 2470	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985 3090	780 900 1020 1140 1260 1380 1500 1620 1740 1860 1980 2100 2220 2340 2460 2580 2700 2820 2940 3060	1270 1570 2020 2620	1280 1580 2030 2630	1530 1890 2250 2610	1340 1760 2180 2600
F	40	80	80	105	120	150	150	180	210
G	15	20	20	22,5	30	35	40	45	40
Maximallänge	3000	3000	3000	3000	3000	3000	3000	3000	3000


Anm.: Die Maximallängen variieren je nach Genauigkeitsklasse Sollten keine gestoßenen Schienen einsetzbar sein, wenden Sie sich bitte an הואלונים

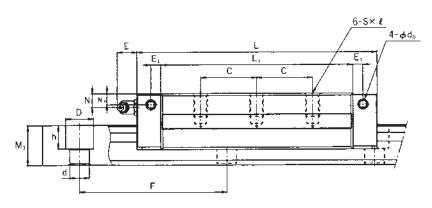


NR/NRS

Schmalwagen

NR/NRS-R (Schwerlasttyp) NR/NRS-LR (Super-Schwerlasttyp)

Baugröße 1)		Haupt- nessun		Abmessungen Führungswagen										
baugrobe "	Höhe M	Breite W	Länge L	В	С	$S imes \ell$	L ₁	Т	К	N	N ₁	Е	E ₁	d ₀
NR/NRS25XR NR/NRS25XLR	31	50	83 102	32	35 25	M6 × 8	62,4 81,6	10	25,5	7	7	10	4	3,9
NR/NRS30R NR/NRS30LR	38	60	98 120,5	40	40 30	M8 × 10	70,9 93,4	10	31	7	7	9,5	5	3,9
NR/NRS35R NR/NRS35LR	44	70	109,5 135	50	50 36	M8 × 12	77,9 103,4	12	35	8	8	9	6	5,2
NR/NRS45R NR/NRS45LR	52	86	139 171	60	60 40	M10 × 17	105 137	15	40,5	10	8	14	7	5,2
NR/NRS55R NR/NRS55LR	63	100	163 200,5	65	75 47,5	M12 × 18	123,6 160,8	18	49	11	10	13,5	8	5,2
NR/NRS65R NR/NRS65LR	75	126	186 246	76	70 55	M16 × 20	143,6 203,6	22	60	16	15	13,5	9	8,2
NR/NRS75R NR/NRS75LR	83	145	218 274	95	80 65	M18 × 25	170,2 226,2	26	68	18	17	13	9	8,2
NR/NRS85R NR/NRS85LR	90	156	247 303	100	80 70	M18 × 25	194,9 251	28	73	20	20	13	10	8,2
NR/NRS100R NR/NRS100LR	105	200	294 334	130	150 100	M18 × 27	223,4 263,4	35	85	23	23	10	12	8,2


¹⁾ Der Aufbau der Bestellbezeichnung ist auf S. 264 erklärt.

²⁾ Die Standardlängen der Führungsschienen sind auf S. 273 aufgeführt.

³⁾ Die Tragzahlen beim Typ NRS gelten für radiale, gegenradiale und tangentiale Belastungen.

 $^{^{4)}}$ Die zulässigen statischen Momente M_A , M_B und M_C sind auf S. 265 angegeben.

NR/NRS-LR

Einheit: mm

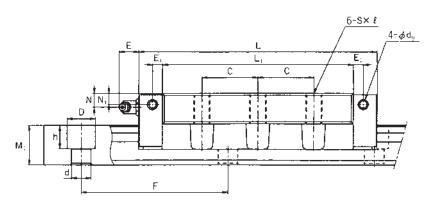

Schmier-							ahlen S ^{3) 4)}	Ra	Tra dial	_	len NF radial		ential	Gew	vicht
nippel	W ₁ -0,05	W_2	Höhe M ₁	F	$d \times D \times h$	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
B-M6F	25	12,5	17	40	6 × 9,5 × 8,5	25,9 34,5	59,8 79,7	33,0 44,0	84,6 113,0		60,1 80,2	15,8 21,1	38,1 50,9	0,43 0,55	3,1
B-M6F	28	16	21	80	7 × 11 × 9	38,2 51,0	86,1 115,0	48,7 64,9	122,0 162,0		88,6 115,0	23,4 31,2	54,9 72,9	0,74 1,0	4,3
B-M6F	34	18	24,5	80	9 × 14 × 12	49,5 67,2	109 148	63,1 85,7	155,0 210,0		110,1 149,1	30,3 41,1	69,8 94,5	1,1 1,4	6,2
B-PT1/8	45	20,5	29	105	14 × 20 × 17	75,3 98,8	163 214	96,0 126,0	231,0 303,0		164,0 215,1	46,1 60,5	104,0 136,4	2,0 2,8	9,8
B-PT1/8	53	23,5	36,5	120	16 × 23 × 20	103 133	220 284	131,0 170,0	310,0 402,0	102,2 132,6	220,1 285,4	62,9 81,6	139,5 180,9	3,3 4,3	14,5
B-PT1/8	63	31,5	43	150	18 × 26 × 22	148 204	309 425	189,0 260,0		147,4 202,8	309,6 426,0	90,7 124,8	196,2 270,0	6,0 8,7	20,3
B-PT1/8	75	35	44	150	22 × 32 × 26	212 278	431 566	271,0 355,0		211,0 277,0	433,0 568,0	130,0 170,0	275,0 360,0	8,7 11,6	24,6
B-PT1/8	85	35,5	48	180	24 × 35 × 28	264 342	531 687	336,0 435,0		262,1 339,3	533,2 690,1	161,3 208,8	338,0 437,4	12,3 15,8	30,5
B-PT1/4	100	50	57	210	26 × 39 × 32	376 470	737 920		1040,0 1300,0		738,4 923,0	229,9 287,5	468,0 585,0	21,8 26,1	42,6

NR/NRS

Flanschwagen mit Gewindebohrung

NR/NRS-A (Schwerlasttyp) NR/NRS-LA (Super-Schwerlasttyp)

Baugröße 1)		Haupt- nessun		Abmessungen Führungswagen										
baugrobe 7	Höhe M	Breite W	Länge L	В	С	$S imes \ell$	L ₁	Т	К	N	N ₁	Е	E ₁	d ₀
NR/NRS25XA NR/NRS25XLA	31	72	83 102	59	45 22,5	M8 × 16	62,4 81,6	16	25,5	7	7	10	4	3,9
NR/NRS30A NR/NRS30LA	38	90	98 120,5	72	52 26	M10 × 18	70,9 93,4	18	31	7	7	9,5	5	3,9
NR/NRS35A NR/NRS35LA	44	100	109,5 135	82	62 31	M10 × 20	77,9 103,4	20	35	8	8	9	6	5,2
NR/NRS45A NR/NRS45LA	52	120	139 171	100	80 40	M12 × 22	105 137	22	40,5	10	8	14	7	5,2
NR/NRS55A NR/NRS55LA	63	140	163 200,5	116	95 47,5	M14 × 24	123,6 160,8	24	49	11	10	13,5	8	5,2
NR/NRS65A NR/NRS65LA	75	170	186 246	142	110 55	M16 × 28	143,6 203,6	28	60	16	15	13,5	9	8,2
NR/NRS75A NR/NRS75LA	83	195	218 274	165	130 65	M18 × 30	170,2 226,2	30	68	18	17	13	9	8,2
NR/NRS85A NR/NRS85LA	90	215	247 303	185	140 70	M20 × 34	194,9 251	34	73	20	20	13	10	8,2
NR/NRS100A NR/NRS100LA	105	260	294 334	220	150 100	M20 × 38	223,4 263,4	38	85	23	23	10	12	8,2


¹⁾ Der Aufbau der Bestellbezeichnung ist auf S. 264 erklärt.

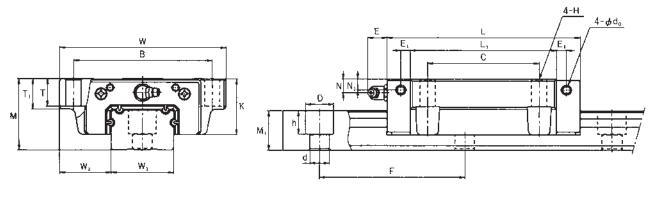
²⁾ Die Standardlängen der Führungsschienen sind auf S. 273 aufgeführt.

³⁾ Die Tragzahlen beim Typ NRS gelten für radiale, gegenradiale und tangentiale Belastungen.

⁴⁾ Die zulässigen statischen Momente M_A, M_B und M_C sind auf S. 265 angegeben.

NR/NRS-LA

Einheit: mm


Schmier-							ahlen 3 ^{3) 4)}	Ra	Tra dial	Ŭ	len NF radial		ential	Gew	vicht
nippel	W ₁ -0,05	W ₂	Höhe M ₁	F	$d \times D \times h$	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
B-M6F	25	23,5	17	40	$6 \times 9,5 \times 8,5$	25,9 34,5	59,8 79,7	33,0 44,0	84,6 113,0		60,1 80,2	15,8 21,1	38,1 50,9	0,58 0,77	3,0
B-M6F	28	31	21	80	7 × 11 × 9	38,2 51,0	86,1 115	48,7 64,9	122,0 162,0	· ·	88,6 115,0	23,4 31,2	54,9 72,9	1,1 1,4	5,2
B-M6F	34	33	24,5	80	9 × 14 × 12	49,5 67,2	109 148	63,1 85,7	155,0 210,0		110,1 149,1	30,3 41,1	69,8 94,5	1,5 1,9	7,3
B-PT1/8	45	37,5	29	105	14 × 20 × 17	75,3 98,8	163 214	96,0 126,0	231,0 303,0		164,0 215,1	46,1 60,5	104,0 136,4	2,7 3,5	12,0
B-PT1/8	53	43,5	36,5	120	16 × 23 × 20	103 133	220 284	131,0 170,0	310,0 402,0	102,2 132,6	220,1 285,4	62,9 81,6	139,5 180,9	4,4 5,7	18,0
B-PT1/8	63	53,5	43	150	18 × 26 × 22	148 204	309 425	189,0 260,0		147,4 202,8	309,6 426,0	90,7 124,8	196,2 270,0	7,6 10,9	28,1
B-PT1/8	75	60	44	150	22 × 32 × 26	212 278	431 566	271,0 355,0		211,0 277,0	433,0 568,0	130,0 170,0	275,0 360,0	11,3 15,0	34,0
B-PT1/8	85	65	48	180	24 × 35 × 28	264 342	531 687	336,0 435,0		262,1 339,3	533,2 690,1	161,3 208,8	338,0 437,4	16,2 20,7	44,6
B-PT1/4	100	80	57	210	26 × 39 × 32	376 470	737 923,0	479,0 599,0	1040,0 1300,0		738,4 923,0	229,9 287,5	468,0 585,0	26,7 31,2	66,7

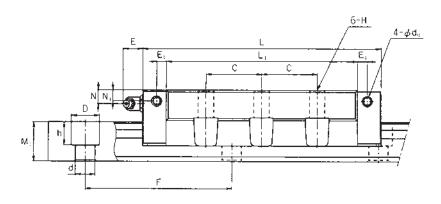
NR/NRS

Flanschwagen mit Durchgangsbohrung

NR/NRS-B (Schwerlasttyp) NR/NRS-LB (Super-Schwerlasttyp)

NR/NRS-B

Baugröße 1)		Haupt- nessun								sungen					
Daugione /	Höhe M	Breite W	Länge L	В	С	Н	L ₁	Т	T ₁	K	N	N ₁	Е	E ₁	d ₀
NR/NRS25XB NR/NRS25XLB	31	72	83 102	59	45 22,5	7	62,4 81,6	12	16	25,5	7	7	10	4	3,9
NR/NRS30B NR/NRS30LB	38	90	98 120,5	72	52 26	9	70,9 93,4	14	18	31	7	7	9,5	5	3,9
NR/NRS35B NR/NRS35LB	44	100	109,5 135	82	62 31	9	77,9 103,4	16	20	35	8	8	9	6	5,2
NR/NRS45B NR/NRS45LB	52	120	139 171	100	80 40	11	105 137	20	22	40,5	10	8	14	7	5,2
NR/NRS55B NR/NRS55LB	63	140	163 200,5	116	95 47,5	14	123,6 160,8	22	24	49	11	10	13,5	8	5,2
NR/NRS65B NR/NRS65LB	75	170	186 246	142	110 55	16	143,6 203,6	25	28	60	16	15	13,5	9	8,2
NR/NRS75B NR/NRS75LB	83	195	218 274	165	130 65	18	170,2 226,2	26	30	68	18	17	13	9	8,2
NR/NRS85B NR/NRS85LB	90	215	247 303	185	140 70	18	194,9 251	28	34	73	20	20	13	10	8,2
NR/NRS100B NR/NRS100LB	105	260	294 334	220	150 100	20	223,4 263,4	32	38	85	23	23	10	12	8,2

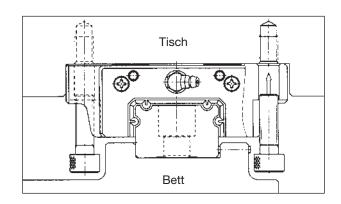

¹⁾ Der Aufbau der Bestellbezeichnung ist aut S. 264 erklärt.

²⁾ Die Standardlängen der Führungsschienen sind auf S. 273 aufgeführt.

³⁾ Die Tragzahlen beim Typ NRS gelten für radiale, gegenradiale und tangentiale Belastungen.

⁴⁾ Die zulässigen statischen Momente M_A, M_B und M_C sind auf S. 265 angegeben.

NR/NRS-LB


Einheit: mm

Schmier-							ahlen S ^{3) 4)}	Ra	Tra dial	Ŭ	len NF radial		ential	Gew	vicht
nippel	W ₁ -0,05	W ₂	Höhe M ₁	F	$d \times D \times h$	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	C [kN]	C ₀ [kN]	Wagen [kg]	Schiene [kg/m]
B-M6F	25	23,5	17	40	$6 \times 9,5 \times 8,5$	25,9 34,5	59,8 79,7	33,0 44,0	84,6 113,0		60,1 80,2	15,8 21,1	38,1 50,9	0,58 0,77	3,0
B-M6F	28	31	21	80	7 × 11 × 9	38,2 51,0	86,1 115	48,7 64,9	122,0 162,0		88,6 115,0	23,4 31,2	54,9 72,9	1,1 1,4	5,2
B-M6F	34	33	24,5	80	9 × 14 × 12	49,5 67,2	119 148	63,1 85,7	155,0 210,0		110,1 149,1	30,3 41,1	69,8 94,5	1,5 1,9	7,3
B-PT1/8	45	37,5	29	105	14 × 20 × 17	75,3 98,8	163 214	96,0 126,0	231,0 303,0	, .	164,0 215,1	46,1 60,5	104,0 136,4	2,7 3,5	12,0
B-PT1/8	53	43,5	36,5	120	16 × 23 × 20	103 133	220 284	131,0 170,0		102,2 132,6	220,1 285,4	62,9 81,6	139,5 180,9	4,4 5,7	18,0
B-PT1/8	63	53,5	43	150	18 × 26 × 22	148 204	309 425	189,0 260,0		147,4 202,8	309,6 426,0	90,7 124,8	196,2 270,0	7,6 10,9	28,1
B-PT1/8	75	60	44	150	22 × 32 × 26	212 278	431 566	271,0 355,0		211,0 277,0	433,0 568,0	130,0 170,0	275,0 360,0	11,3 15,0	34,0
B-PT1/8	85	65	48	180	24 × 35 × 28	264 342	531 687	336,0 435,0		262,1 339,3	533,2 690,1	161,3 208,8	338,0 437,4	16,2 20,7	44,6
B-PT1/4	100	80	57	210	26 × 39 × 32	376 470	737 920		1040,0 1300,0		738,4 923,0	229,9 287,5	468,0 585,0	26,7 31,2	66,7

Beim Einsatz zu beachten

Einbau von NR...B und NR...LB

Wenn die Befestigungsschrauben bei den Typen NR...B und NR...LB mit der Montagefläche in Berührung kommen können, empfehlen wir folgende Konstruktion (s. Abb. rechts).

